Unverified Commit 588865f0 authored by aoshen524's avatar aoshen524 Committed by GitHub
Browse files

[Feature] Support Tensor Parallelism and Weight Slicing for Lora (#4274)


Co-authored-by: default avatarShenAo1111 <1377693092@qq.com>
Co-authored-by: default avatarBaizhou Zhang <sobereddiezhang@gmail.com>
parent 3196999f
...@@ -127,6 +127,12 @@ jobs: ...@@ -127,6 +127,12 @@ jobs:
cd test/srt cd test/srt
python3 test_mla_tp.py python3 test_mla_tp.py
- name: Test lora tensor parallelism (TP=2)
timeout-minutes: 10
run: |
cd test/srt/models/lora
python3 test_lora_tp.py
performance-test-1-gpu-part-1: performance-test-1-gpu-part-1:
if: (github.repository == 'sgl-project/sglang' || github.event_name == 'pull_request') && if: (github.repository == 'sgl-project/sglang' || github.event_name == 'pull_request') &&
github.event.pull_request.draft == false github.event.pull_request.draft == false
......
...@@ -22,7 +22,10 @@ def launch_server(args): ...@@ -22,7 +22,10 @@ def launch_server(args):
cmd += f"--disable-radix --disable-cuda-graph " cmd += f"--disable-radix --disable-cuda-graph "
cmd += f"--max-loras-per-batch {args.max_loras_per_batch} " cmd += f"--max-loras-per-batch {args.max_loras_per_batch} "
cmd += f"--max-running-requests {args.max_running_requests} " cmd += f"--max-running-requests {args.max_running_requests} "
cmd += f"--lora-backend {args.lora_backend}" cmd += f"--lora-backend {args.lora_backend} "
cmd += f"--tp-size {args.tp_size} "
if args.disable_custom_all_reduce:
cmd += "--disable-custom-all-reduce"
print(cmd) print(cmd)
os.system(cmd) os.system(cmd)
...@@ -48,6 +51,18 @@ if __name__ == "__main__": ...@@ -48,6 +51,18 @@ if __name__ == "__main__":
type=str, type=str,
default="triton", default="triton",
) )
parser.add_argument(
"--tp-size",
type=int,
default=1,
help="Tensor parallel size for distributed inference",
)
# disable_custom_all_reduce
parser.add_argument(
"--disable-custom-all-reduce",
action="store_true",
help="Disable custom all reduce when device does not support p2p communication",
)
args = parser.parse_args() args = parser.parse_args()
launch_server(args) launch_server(args)
...@@ -782,6 +782,8 @@ class QKVParallelLinear(ColumnParallelLinear): ...@@ -782,6 +782,8 @@ class QKVParallelLinear(ColumnParallelLinear):
else: else:
self.num_kv_heads = divide(self.total_num_kv_heads, tp_size) self.num_kv_heads = divide(self.total_num_kv_heads, tp_size)
self.num_kv_head_replicas = 1 self.num_kv_head_replicas = 1
self.q_proj_shard_size = self.num_heads * self.head_size
self.kv_proj_shard_size = self.num_kv_heads * self.head_size
input_size = self.hidden_size input_size = self.hidden_size
output_size = ( output_size = (
(self.num_heads + 2 * self.num_kv_heads) * tp_size * self.head_size (self.num_heads + 2 * self.num_kv_heads) * tp_size * self.head_size
......
from typing import List, Tuple
import torch import torch
from torch import nn from torch import nn
...@@ -38,8 +40,22 @@ class BaseLayerWithLoRA(nn.Module): ...@@ -38,8 +40,22 @@ class BaseLayerWithLoRA(nn.Module):
def set_lora_info(self, *args): def set_lora_info(self, *args):
pass pass
def slice_lora_a_weights(self, A: torch.Tensor, tp_rank: int):
pass
def slice_lora_b_weights(self, B: torch.Tensor, tp_rank: int):
pass
class VocabParallelEmbeddingWithLoRA(BaseLayerWithLoRA): class VocabParallelEmbeddingWithLoRA(BaseLayerWithLoRA):
"""
Vocab parallel embedding layer with support for LoRA (Low-Rank Adaptation).
Note: The current version does not yet implement the LoRA functionality.
This class behaves exactly the same as the base VocabParallelEmbedding.
Future versions will integrate LoRA functionality to support efficient parameter fine-tuning.
"""
def __init__( def __init__(
self, self,
base_layer: VocabParallelEmbedding, base_layer: VocabParallelEmbedding,
...@@ -101,6 +117,16 @@ class ColumnParallelLinearWithLoRA(BaseLayerWithLoRA): ...@@ -101,6 +117,16 @@ class ColumnParallelLinearWithLoRA(BaseLayerWithLoRA):
output_bias = self.base_layer.bias if self.base_layer.skip_bias_add else None output_bias = self.base_layer.bias if self.base_layer.skip_bias_add else None
return output, output_bias return output, output_bias
def slice_lora_a_weights(self, A: torch.Tensor, tp_rank: int):
return A
def slice_lora_b_weights(self, B: torch.Tensor, tp_rank: int):
shard_size = self.base_layer.output_partition_sizes[0]
start_idx = tp_rank * shard_size
end_idx = (tp_rank + 1) * shard_size
B = B[start_idx:end_idx, :]
return B
class MergedColumnParallelLinearWithLoRA(ColumnParallelLinearWithLoRA): class MergedColumnParallelLinearWithLoRA(ColumnParallelLinearWithLoRA):
def __init__( def __init__(
...@@ -120,6 +146,7 @@ class MergedColumnParallelLinearWithLoRA(ColumnParallelLinearWithLoRA): ...@@ -120,6 +146,7 @@ class MergedColumnParallelLinearWithLoRA(ColumnParallelLinearWithLoRA):
self.set_lora = True self.set_lora = True
self.A_buffer_gate_up = A_buffer self.A_buffer_gate_up = A_buffer
if self.lora_backend.fuse_stacked_lora_b: if self.lora_backend.fuse_stacked_lora_b:
# TODO: avoid using contiguous() in GPU.
# B_buffer_gate_up: (num_lora, 2 * output_dim, r) # B_buffer_gate_up: (num_lora, 2 * output_dim, r)
self.B_buffer_gate_up = torch.cat( self.B_buffer_gate_up = torch.cat(
(B_buffer[0], B_buffer[1]), dim=-2 (B_buffer[0], B_buffer[1]), dim=-2
...@@ -142,6 +169,16 @@ class MergedColumnParallelLinearWithLoRA(ColumnParallelLinearWithLoRA): ...@@ -142,6 +169,16 @@ class MergedColumnParallelLinearWithLoRA(ColumnParallelLinearWithLoRA):
else base_output + lora_output * self.scaling else base_output + lora_output * self.scaling
) )
def slice_lora_a_weights(self, A: torch.Tensor, tp_rank: int):
return A
def slice_lora_b_weights(self, B: torch.Tensor, tp_rank: int):
# Since the outputs for both gate and up are identical, we use a random one.
shard_size = self.base_layer.output_partition_sizes[0]
start_idx = tp_rank * shard_size
end_idx = (tp_rank + 1) * shard_size
return B[:, start_idx:end_idx, :]
class QKVParallelLinearWithLoRA(ColumnParallelLinearWithLoRA): class QKVParallelLinearWithLoRA(ColumnParallelLinearWithLoRA):
def init__( def init__(
...@@ -210,6 +247,27 @@ class QKVParallelLinearWithLoRA(ColumnParallelLinearWithLoRA): ...@@ -210,6 +247,27 @@ class QKVParallelLinearWithLoRA(ColumnParallelLinearWithLoRA):
else base_output + lora_output * self.scaling else base_output + lora_output * self.scaling
) )
def slice_lora_a_weights(self, A: torch.Tensor, tp_rank: int):
return A
def slice_lora_b_weights(
self, B: List[torch.Tensor], tp_rank: int
) -> Tuple[torch.Tensor, torch.Tensor]:
B_q, B_kv = B
base_layer = self.base_layer
q_proj_shard_size = base_layer.q_proj_shard_size
kv_proj_shard_size = base_layer.kv_proj_shard_size
num_kv_head_replicas = base_layer.num_kv_head_replicas
q_start_idx = q_proj_shard_size * tp_rank
q_end_idx = q_start_idx + q_proj_shard_size
kv_shard_id = tp_rank // num_kv_head_replicas
kv_start_idx = kv_proj_shard_size * kv_shard_id
kv_end_idx = kv_start_idx + kv_proj_shard_size
return B_q[q_start_idx:q_end_idx, :], B_kv[:, kv_start_idx:kv_end_idx, :]
class RowParallelLinearWithLoRA(BaseLayerWithLoRA): class RowParallelLinearWithLoRA(BaseLayerWithLoRA):
def __init__( def __init__(
...@@ -274,6 +332,16 @@ class RowParallelLinearWithLoRA(BaseLayerWithLoRA): ...@@ -274,6 +332,16 @@ class RowParallelLinearWithLoRA(BaseLayerWithLoRA):
output_bias = self.base_layer.bias output_bias = self.base_layer.bias
return output, output_bias return output, output_bias
def slice_lora_a_weights(self, A: torch.Tensor, tp_rank: int):
shard_size = self.base_layer.input_size_per_partition
start_idx = tp_rank * shard_size
end_idx = (tp_rank + 1) * shard_size
A = A[:, start_idx:end_idx].contiguous()
return A
def slice_lora_b_weights(self, B: torch.Tensor, tp_rank: int):
return B
def get_lora_layer( def get_lora_layer(
layer: nn.Module, lora_rank: int, scaling: int, lora_backend: BaseLoRABackend layer: nn.Module, lora_rank: int, scaling: int, lora_backend: BaseLoRABackend
......
...@@ -39,16 +39,9 @@ class LoRALayer(nn.Module): ...@@ -39,16 +39,9 @@ class LoRALayer(nn.Module):
super().__init__() super().__init__()
self.config: LoRAConfig = config self.config: LoRAConfig = config
self.base_hf_config: AutoConfig = base_hf_config self.base_hf_config: AutoConfig = base_hf_config
self.weights: Dict[str, torch.Tensor] = {}
self.weight_gpu: Dict[str, torch.Tensor] = {}
def load_to_gpu(self):
for name, weight in self.weights.items():
self.weight_gpu[name] = weight.to(torch.float16).to("cuda")
def offload_from_gpu(self): # lora weights in cpu. The weights are loaded from checkpoint.
for name, weight in self.weights.items(): self.weights: Dict[str, torch.Tensor] = {}
self.weight_gpu[name] = None
class LoRAAdapter(nn.Module): class LoRAAdapter(nn.Module):
...@@ -77,19 +70,6 @@ class LoRAAdapter(nn.Module): ...@@ -77,19 +70,6 @@ class LoRAAdapter(nn.Module):
) )
self.weights: Dict[str, torch.Tensor] = {} self.weights: Dict[str, torch.Tensor] = {}
self.weights_gpu: Dict[str, torch.Tensor] = {}
def load_to_gpu(self):
for name, weight in self.weights.items():
self.weights_gpu[name] = weight.to(torch.float16).to("cuda")
for layer in self.layers:
layer.load_to_gpu()
def offload_from_gpu(self):
for name, weight in self.weights.items():
self.weights_gpu[name] = None
for layer in self.layers:
layer.offload_from_gpu()
# initialize the LoRA weights to cpu # initialize the LoRA weights to cpu
def initialize_weights(self): def initialize_weights(self):
......
...@@ -23,7 +23,7 @@ import torch ...@@ -23,7 +23,7 @@ import torch
from sglang.srt.configs.load_config import LoadConfig from sglang.srt.configs.load_config import LoadConfig
from sglang.srt.hf_transformers_utils import AutoConfig from sglang.srt.hf_transformers_utils import AutoConfig
from sglang.srt.lora.backend import BaseLoRABackend, get_backend_from_name from sglang.srt.lora.backend import BaseLoRABackend, get_backend_from_name
from sglang.srt.lora.layers import get_lora_layer from sglang.srt.lora.layers import BaseLayerWithLoRA, get_lora_layer
from sglang.srt.lora.lora import LoRAAdapter from sglang.srt.lora.lora import LoRAAdapter
from sglang.srt.lora.lora_config import LoRAConfig from sglang.srt.lora.lora_config import LoRAConfig
from sglang.srt.lora.mem_pool import LoRAMemoryPool from sglang.srt.lora.mem_pool import LoRAMemoryPool
...@@ -51,6 +51,8 @@ class LoRAManager: ...@@ -51,6 +51,8 @@ class LoRAManager:
load_config: LoadConfig, load_config: LoadConfig,
dtype: torch.dtype, dtype: torch.dtype,
lora_backend: str = "triton", lora_backend: str = "triton",
tp_size: int = 1,
tp_rank: int = 0,
): ):
self.base_model: torch.nn.Module = base_model self.base_model: torch.nn.Module = base_model
self.lora_paths: Dict[str, str] = lora_paths self.lora_paths: Dict[str, str] = lora_paths
...@@ -58,6 +60,9 @@ class LoRAManager: ...@@ -58,6 +60,9 @@ class LoRAManager:
self.max_loras_per_batch: int = max_loras_per_batch self.max_loras_per_batch: int = max_loras_per_batch
self.load_config: LoadConfig = load_config self.load_config: LoadConfig = load_config
self.dtype: torch.dtype = dtype self.dtype: torch.dtype = dtype
self.device: torch.device = next(self.base_model.parameters()).device
self.tp_size: int = tp_size
self.tp_rank: int = tp_rank
# LoRA backend for running sgemm kernels # LoRA backend for running sgemm kernels
logger.info(f"Using {lora_backend} as backend of LoRA kernels.") logger.info(f"Using {lora_backend} as backend of LoRA kernels.")
...@@ -110,7 +115,13 @@ class LoRAManager: ...@@ -110,7 +115,13 @@ class LoRAManager:
def init_lora_memory_pool(self): def init_lora_memory_pool(self):
# Initialize memory pool # Initialize memory pool
self.memory_pool = LoRAMemoryPool( self.memory_pool = LoRAMemoryPool(
self.base_hf_config, self.max_loras_per_batch, self.max_lora_dim, self.dtype self.base_hf_config,
self.max_loras_per_batch,
self.max_lora_dim,
self.dtype,
self.tp_size,
self.tp_rank,
self.lora_modules,
) )
# Initialize target lora modules in memory pool # Initialize target lora modules in memory pool
...@@ -131,12 +142,12 @@ class LoRAManager: ...@@ -131,12 +142,12 @@ class LoRAManager:
seg_lens = ( seg_lens = (
forward_batch.extend_seq_lens forward_batch.extend_seq_lens
if forward_batch.forward_mode.is_extend() if forward_batch.forward_mode.is_extend()
else torch.ones(bs, device="cuda") else torch.ones(bs, device=self.device)
) )
seg_indptr = torch.zeros((bs + 1,), dtype=torch.int32, device="cuda") seg_indptr = torch.zeros((bs + 1,), dtype=torch.int32, device=self.device)
seg_indptr[1:] = torch.cumsum(seg_lens, dim=0) seg_indptr[1:] = torch.cumsum(seg_lens, dim=0)
max_len = int(torch.max(seg_lens)) max_len = int(torch.max(seg_lens))
weight_indices = torch.empty((bs,), dtype=torch.int64, device="cuda") weight_indices = torch.empty((bs,), dtype=torch.int64, device=self.device)
for i, lora_path in enumerate(forward_batch.lora_paths): for i, lora_path in enumerate(forward_batch.lora_paths):
weight_indices[i] = self.memory_pool.get_buffer_id(lora_path) weight_indices[i] = self.memory_pool.get_buffer_id(lora_path)
...@@ -150,21 +161,31 @@ class LoRAManager: ...@@ -150,21 +161,31 @@ class LoRAManager:
self.lora_backend.set_batch_info(batch_info) self.lora_backend.set_batch_info(batch_info)
# call set_lora_info for each lora modules # call set_lora_info for each lora modules
for module_name, module in self.lora_modules: for layer_id, modules in self.lora_modules.items():
layer_id = get_layer_id(module_name) for module_name, module in modules:
if "qkv_proj" not in module_name: if "qkv_proj" in module_name:
weight_name = get_weight_name(
module_name, self.lora_weight_names, LoRAType.LORA_A
)
module.set_lora_info( module.set_lora_info(
self.memory_pool.get_tensor(weight_name, layer_id, LoRAType.LORA_A), self.memory_pool.get_tensor(
self.memory_pool.get_tensor(weight_name, layer_id, LoRAType.LORA_B), "qkv_proj", layer_id, LoRAType.LORA_A
),
self.memory_pool.get_tensor(
"q_proj", layer_id, LoRAType.LORA_B
),
self.memory_pool.get_tensor(
"kv_proj", layer_id, LoRAType.LORA_B
),
) )
else: else:
weight_name = get_weight_name(
module_name, self.lora_weight_names, LoRAType.LORA_A
)
module.set_lora_info( module.set_lora_info(
self.memory_pool.get_tensor("qkv_proj", layer_id, LoRAType.LORA_A), self.memory_pool.get_tensor(
self.memory_pool.get_tensor("q_proj", layer_id, LoRAType.LORA_B), weight_name, layer_id, LoRAType.LORA_A
self.memory_pool.get_tensor("kv_proj", layer_id, LoRAType.LORA_B), ),
self.memory_pool.get_tensor(
weight_name, layer_id, LoRAType.LORA_B
),
) )
def set_lora_module(self, module_name, module): def set_lora_module(self, module_name, module):
...@@ -182,10 +203,13 @@ class LoRAManager: ...@@ -182,10 +203,13 @@ class LoRAManager:
) )
# Monkey patch to use the LoRA version layers # Monkey patch to use the LoRA version layers
self.lora_modules: List[Tuple[str, torch.nn.Module]] = [] self.lora_modules: Dict[int, List[Tuple[str, BaseLayerWithLoRA]]] = {
i: [] for i in range(self.base_hf_config.num_hidden_layers)
}
for module_name, module in self.base_model.named_modules(): for module_name, module in self.base_model.named_modules():
# The module should be converted if it is included in target_names # The module should be converted if it is included in target_names
if module_name.split(".")[-1] in customized_target_names: if module_name.split(".")[-1] in customized_target_names:
self.lora_modules.append( layer_id = get_layer_id(module_name)
self.lora_modules[layer_id].append(
(module_name, self.set_lora_module(module_name, module)) (module_name, self.set_lora_module(module_name, module))
) )
...@@ -2,9 +2,12 @@ from typing import Dict, List, Optional, Set, Tuple ...@@ -2,9 +2,12 @@ from typing import Dict, List, Optional, Set, Tuple
import torch import torch
from sglang.srt.distributed import divide
from sglang.srt.hf_transformers_utils import AutoConfig from sglang.srt.hf_transformers_utils import AutoConfig
from sglang.srt.lora.layers import BaseLayerWithLoRA
from sglang.srt.lora.lora import LoRAAdapter from sglang.srt.lora.lora import LoRAAdapter
from sglang.srt.lora.utils import ( from sglang.srt.lora.utils import (
ROW_PARALLELISM_LINEAR_LORA_NAMES,
LoRAType, LoRAType,
get_hidden_dim, get_hidden_dim,
get_stacked_multiply, get_stacked_multiply,
...@@ -21,6 +24,9 @@ class LoRAMemoryPool: ...@@ -21,6 +24,9 @@ class LoRAMemoryPool:
max_loras_per_batch: int, max_loras_per_batch: int,
max_lora_dim: int, max_lora_dim: int,
dtype: torch.dtype, dtype: torch.dtype,
tp_size: int,
tp_rank: int,
lora_modules: Dict[int, List[Tuple[str, BaseLayerWithLoRA]]],
): ):
self.base_hf_config: AutoConfig = base_hf_config self.base_hf_config: AutoConfig = base_hf_config
...@@ -28,6 +34,9 @@ class LoRAMemoryPool: ...@@ -28,6 +34,9 @@ class LoRAMemoryPool:
self.max_loras_per_batch: int = max_loras_per_batch self.max_loras_per_batch: int = max_loras_per_batch
self.max_lora_dim: int = max_lora_dim self.max_lora_dim: int = max_lora_dim
self.dtype: torch.dtype = dtype self.dtype: torch.dtype = dtype
self.tp_size: int = tp_size
self.tp_rank: int = tp_rank
self.lora_modules: Dict[int, List[Tuple[str, BaseLayerWithLoRA]]] = lora_modules
# Both A_buffer and B_buffer maps lora weight names to its buffer space. # Both A_buffer and B_buffer maps lora weight names to its buffer space.
# A_buffer contains num_layer number of row-major tensors with shape # A_buffer contains num_layer number of row-major tensors with shape
...@@ -45,6 +54,41 @@ class LoRAMemoryPool: ...@@ -45,6 +54,41 @@ class LoRAMemoryPool:
# Here we don't initalize to None since None is a valid uid # Here we don't initalize to None since None is a valid uid
self.buffer_id_to_uid: List[Optional[str]] = [""] * self.max_loras_per_batch self.buffer_id_to_uid: List[Optional[str]] = [""] * self.max_loras_per_batch
def get_lora_A_shape(
self, module_name: str, base_model: torch.nn.Module
) -> Tuple[int]:
"""
Given a module_name (might be a stacked name), return the hidden dims of modules's input and output.
"""
input_dim, _ = get_hidden_dim(module_name, self.base_hf_config, base_model)
c = get_stacked_multiply(module_name)
if self.tp_size > 1:
if module_name in ROW_PARALLELISM_LINEAR_LORA_NAMES:
input_dim = divide(input_dim, self.tp_size)
return (
self.max_loras_per_batch,
self.max_lora_dim * c,
input_dim,
)
def get_lora_B_shape(
self, module_name: str, base_model: torch.nn.Module
) -> Tuple[int]:
"""
Given a module_name (might be a stacked name), return the hidden dims of modules's input and output.
"""
_, output_dim = get_hidden_dim(module_name, self.base_hf_config, base_model)
c = get_stacked_multiply(module_name)
if self.tp_size > 1:
if module_name not in ROW_PARALLELISM_LINEAR_LORA_NAMES:
output_dim = divide(output_dim, self.tp_size)
return (
c,
self.max_loras_per_batch,
output_dim,
self.max_lora_dim,
)
def init_buffers( def init_buffers(
self, self,
lora_weight_names: Set[Tuple[str]], lora_weight_names: Set[Tuple[str]],
...@@ -54,41 +98,30 @@ class LoRAMemoryPool: ...@@ -54,41 +98,30 @@ class LoRAMemoryPool:
# lora_weight_names is a set of name pairs indicating each pair of lora modules to load # lora_weight_names is a set of name pairs indicating each pair of lora modules to load
# e.g., {("qkv_proj", "q_proj"), ("qkv_proj", "kv_proj"), ("o_proj", "o_proj")} # e.g., {("qkv_proj", "q_proj"), ("qkv_proj", "kv_proj"), ("o_proj", "o_proj")}
self.lora_weight_names: Set[Tuple[str]] = lora_weight_names self.lora_weight_names: Set[Tuple[str]] = lora_weight_names
device = next(base_model.parameters()).device
for module_A, module_B in lora_weight_names: lora_module_A_names = set([name[0] for name in lora_weight_names])
lora_module_B_names = set([name[1] for name in lora_weight_names])
# Init A tensor, column_major=False # Init A tensor, column_major=False
input_dim, _ = get_hidden_dim(module_A, self.base_hf_config, base_model) for module_A in lora_module_A_names:
c = get_stacked_multiply(module_A) lora_A_shape = self.get_lora_A_shape(module_A, base_model)
if module_A not in self.A_buffer:
self.A_buffer[module_A] = [ self.A_buffer[module_A] = [
torch.empty( torch.empty(
( lora_A_shape,
self.max_loras_per_batch,
self.max_lora_dim * c,
input_dim,
),
dtype=self.dtype, dtype=self.dtype,
device="cuda", device=device,
) )
for i in range(self.num_layer) for i in range(self.num_layer)
] ]
# Init B tensor, column_major=True # Init B tensor, column_major=True
_, output_dim = get_hidden_dim(module_B, self.base_hf_config, base_model) for module_B in lora_module_B_names:
c = get_stacked_multiply(module_B) lora_B_shape = self.get_lora_B_shape(module_B, base_model)
if module_B not in self.B_buffer:
self.B_buffer[module_B] = [ self.B_buffer[module_B] = [
torch.empty( torch.empty(
( lora_B_shape,
c, # stacked lora_b modules might need separation
self.max_loras_per_batch,
output_dim,
self.max_lora_dim,
),
dtype=self.dtype, dtype=self.dtype,
device="cuda", device=device,
) )
for i in range(self.num_layer) for _ in range(self.num_layer)
] ]
def prepare_lora_batch( def prepare_lora_batch(
...@@ -136,30 +169,56 @@ class LoRAMemoryPool: ...@@ -136,30 +169,56 @@ class LoRAMemoryPool:
assert lora_adapter is not None assert lora_adapter is not None
for layer_id in range(self.num_layer): for layer_id in range(self.num_layer):
layer_weights = lora_adapter.layers[layer_id].weights layer_weights = lora_adapter.layers[layer_id].weights
temp_A_buffer: Dict[str, torch.Tensor] = {}
temp_B_buffer: Dict[str, torch.Tensor] = {}
for name, weights in layer_weights.items(): for name, weights in layer_weights.items():
if "lora_A" in name: if "lora_A" in name:
lora_weight_name = get_weight_name( lora_weight_name = get_weight_name(
name, self.lora_weight_names, LoRAType.LORA_A name, self.lora_weight_names, LoRAType.LORA_A
) )
if lora_weight_name: temp_A_buffer[lora_weight_name] = weights
self.A_buffer[lora_weight_name][layer_id][buffer_id].copy_(
weights
)
else: else:
lora_weight_name = get_weight_name( lora_weight_name = get_weight_name(
name, self.lora_weight_names, LoRAType.LORA_B name, self.lora_weight_names, LoRAType.LORA_B
) )
if lora_weight_name: temp_B_buffer[lora_weight_name] = weights
c = get_stacked_multiply(lora_weight_name)
if self.tp_size > 1:
cur_layer_modules = self.lora_modules[layer_id]
for module_name, module in cur_layer_modules:
if "qkv_proj" in module_name:
temp_A_buffer["qkv_proj"] = module.slice_lora_a_weights(
temp_A_buffer["qkv_proj"], self.tp_rank
)
temp_B_buffer["q_proj"], temp_B_buffer["kv_proj"] = (
module.slice_lora_b_weights(
[temp_B_buffer["q_proj"], temp_B_buffer["kv_proj"]],
self.tp_rank,
)
)
else:
weight_name = get_weight_name(
module_name, self.lora_weight_names, LoRAType.LORA_A
)
temp_A_buffer[weight_name] = module.slice_lora_a_weights(
temp_A_buffer[weight_name], self.tp_rank
)
temp_B_buffer[weight_name] = module.slice_lora_b_weights(
temp_B_buffer[weight_name], self.tp_rank
)
for name, weights in temp_A_buffer.items():
self.A_buffer[name][layer_id][buffer_id].copy_(weights)
for name, weights in temp_B_buffer.items():
c = get_stacked_multiply(name)
if c > 1: if c > 1:
for stacked_id in range(c): for stacked_id in range(c):
self.B_buffer[lora_weight_name][layer_id][stacked_id][ self.B_buffer[name][layer_id][stacked_id][buffer_id].copy_(
buffer_id weights[stacked_id]
].copy_(weights[stacked_id]) )
else: else:
self.B_buffer[lora_weight_name][layer_id][0][ self.B_buffer[name][layer_id][0][buffer_id].copy_(weights)
buffer_id
].copy_(weights)
def get_tensor( def get_tensor(
self, weight_name: str, layer_id: int, lora_type: LoRAType self, weight_name: str, layer_id: int, lora_type: LoRAType
......
...@@ -133,9 +133,20 @@ def get_weight_name( ...@@ -133,9 +133,20 @@ def get_weight_name(
target_name is name of a given module, target_name is name of a given module,
lora_weight_names is a set of lora stacked name pairs (see get_stacked_name method above) lora_weight_names is a set of lora stacked name pairs (see get_stacked_name method above)
If there is a weight name in lora_weight_names that can match target_name, return this name If there is a weight name in lora_weight_names that can match target_name, return this name
Else return None Else raise ValueError.
""" """
idx = 0 if lora_type == LoRAType.LORA_A else 1 idx = 0 if lora_type == LoRAType.LORA_A else 1
for weight_name_pair in lora_weight_names: for weight_name_pair in lora_weight_names:
if weight_name_pair[idx] in target_name: if weight_name_pair[idx] in target_name:
return weight_name_pair[idx] return weight_name_pair[idx]
raise ValueError(
f"Cannot find weight name for {target_name} in {lora_weight_names}"
)
# TODO: [PR #4274] For future use to simplify the mapping between HF module names and customized module names.
VOCAB_PARALLELISM_EMBEDDING_NAMES = ["embeddings"]
COLUMN_PARALLELISM_LINEAR_LORA_NAMES = ["gate_proj", "up_proj"]
MERGED_COLUMN_PARALLELISM_LINEAR_LORA_NAMES = ["gate_up_proj"]
QKV_PARALLELISM_LINEAR_LORA_NAMES = ["qkv_proj"]
ROW_PARALLELISM_LINEAR_LORA_NAMES = ["o_proj", "down_proj"]
...@@ -188,9 +188,6 @@ class ModelRunner: ...@@ -188,9 +188,6 @@ class ModelRunner:
supports_torch_tp = getattr(self.model, "supports_torch_tp", False) supports_torch_tp = getattr(self.model, "supports_torch_tp", False)
if self.tp_size > 1 and supports_torch_tp: if self.tp_size > 1 and supports_torch_tp:
self.apply_torch_tp() self.apply_torch_tp()
self.torch_tp_applied = True
else:
self.torch_tp_applied = False
# Init lora # Init lora
if server_args.lora_paths is not None: if server_args.lora_paths is not None:
...@@ -624,6 +621,8 @@ class ModelRunner: ...@@ -624,6 +621,8 @@ class ModelRunner:
load_config=self.load_config, load_config=self.load_config,
dtype=self.dtype, dtype=self.dtype,
lora_backend=self.server_args.lora_backend, lora_backend=self.server_args.lora_backend,
tp_size=self.tp_size,
tp_rank=self.tp_rank,
) )
logger.info("LoRA manager ready.") logger.info("LoRA manager ready.")
......
...@@ -257,7 +257,7 @@ def get_available_gpu_memory(device, gpu_id, distributed=False, empty_cache=True ...@@ -257,7 +257,7 @@ def get_available_gpu_memory(device, gpu_id, distributed=False, empty_cache=True
When distributed is True, the available memory is the minimum available memory of all GPUs. When distributed is True, the available memory is the minimum available memory of all GPUs.
""" """
if device == "cuda": if device == "cuda":
num_gpus = torch.cuda.device_count() num_gpus = cuda_device_count_stateless()
assert gpu_id < num_gpus assert gpu_id < num_gpus
if torch.cuda.current_device() != gpu_id: if torch.cuda.current_device() != gpu_id:
......
...@@ -437,6 +437,7 @@ class SRTRunner: ...@@ -437,6 +437,7 @@ class SRTRunner:
speculative_eagle_topk: Optional[int] = None, speculative_eagle_topk: Optional[int] = None,
speculative_num_draft_tokens: Optional[int] = None, speculative_num_draft_tokens: Optional[int] = None,
disable_overlap_schedule: bool = False, disable_overlap_schedule: bool = False,
disable_custom_all_reduce: bool = False,
): ):
self.model_type = model_type self.model_type = model_type
self.is_generation = model_type == "generation" self.is_generation = model_type == "generation"
...@@ -470,6 +471,7 @@ class SRTRunner: ...@@ -470,6 +471,7 @@ class SRTRunner:
enable_ep_moe=enable_ep_moe, enable_ep_moe=enable_ep_moe,
disable_overlap_schedule=disable_overlap_schedule, disable_overlap_schedule=disable_overlap_schedule,
cuda_graph_max_bs=4, cuda_graph_max_bs=4,
disable_custom_all_reduce=disable_custom_all_reduce,
**spec_kwargs, **spec_kwargs,
) )
......
...@@ -49,7 +49,7 @@ ALL_OTHER_LORA_MODELS = [ ...@@ -49,7 +49,7 @@ ALL_OTHER_LORA_MODELS = [
LoRAModelCase( LoRAModelCase(
base="meta-llama/Llama-2-7b-hf", base="meta-llama/Llama-2-7b-hf",
adaptors=[LoRAAdaptor(name="winddude/wizardLM-LlaMA-LoRA-7B")], adaptors=[LoRAAdaptor(name="winddude/wizardLM-LlaMA-LoRA-7B")],
max_loras_per_batch=1, max_loras_per_batch=2,
), ),
] ]
...@@ -96,6 +96,7 @@ class TestLoRABackend(unittest.TestCase): ...@@ -96,6 +96,7 @@ class TestLoRABackend(unittest.TestCase):
disable_cuda_graph=True, disable_cuda_graph=True,
disable_radix_cache=True, disable_radix_cache=True,
mem_fraction_static=0.88, mem_fraction_static=0.88,
disable_custom_all_reduce=False,
) as srt_runner: ) as srt_runner:
srt_outputs = srt_runner.forward( srt_outputs = srt_runner.forward(
[prompt], max_new_tokens=max_new_tokens, lora_paths=[adaptor.name] [prompt], max_new_tokens=max_new_tokens, lora_paths=[adaptor.name]
...@@ -114,6 +115,7 @@ class TestLoRABackend(unittest.TestCase): ...@@ -114,6 +115,7 @@ class TestLoRABackend(unittest.TestCase):
model_type="generation", model_type="generation",
tp_size=model_case.tp_size, tp_size=model_case.tp_size,
mem_fraction_static=0.88, mem_fraction_static=0.88,
disable_custom_all_reduce=False,
) as srt_runner: ) as srt_runner:
srt_no_lora_outputs = srt_runner.forward( srt_no_lora_outputs = srt_runner.forward(
[prompt], max_new_tokens=max_new_tokens [prompt], max_new_tokens=max_new_tokens
......
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import multiprocessing as mp
import os
import unittest
from typing import List
import torch
from utils import TORCH_DTYPES, LoRAAdaptor, LoRAModelCase
from sglang.test.runners import HFRunner, SRTRunner
from sglang.test.test_utils import calculate_rouge_l, is_in_ci
CI_LORA_MODELS = [
LoRAModelCase(
base="meta-llama/Llama-3.1-8B-Instruct",
adaptors=[
LoRAAdaptor(
name="algoprog/fact-generation-llama-3.1-8b-instruct-lora",
),
],
max_loras_per_batch=1,
),
LoRAModelCase(
base="meta-llama/Llama-3.1-8B-Instruct",
adaptors=[
LoRAAdaptor(
name="Nutanix/Meta-Llama-3.1-8B-Instruct_lora_4_alpha_16",
prefill_tolerance=1e-1,
),
],
max_loras_per_batch=1,
),
]
ALL_OTHER_LORA_MODELS = [
LoRAModelCase(
base="meta-llama/Llama-2-7b-hf",
adaptors=[LoRAAdaptor(name="winddude/wizardLM-LlaMA-LoRA-7B")],
max_loras_per_batch=2,
),
]
PROMPTS = [
"AI is a field of computer science focused on",
"""
### Instruction:
Tell me about llamas and alpacas
### Response:
Llamas are large, long-necked animals with a woolly coat. They have two toes on each foot instead of three like other camelids (camels, dromedaries). Llamas live in the Andean mountains of South America where they graze on grasses and shrubs. Alpaca is another name for domesticated llama. The word "alpaca" comes from an Incan language meaning "golden fleece." Alpacas look very similar to llamas but are smaller than their wild relatives. Both species were used by ancient people as pack animals and for meat. Today both llamas and alpacas are raised primarily for their fiber which can be spun into yarn or knitted into clothing.
### Question 2:
What do you know about llamas?
### Answer:
""",
]
BACKEND = "triton"
class TestLoRATP(unittest.TestCase):
def run_tp(
self,
prompt: str,
model_case: LoRAModelCase,
torch_dtype: torch.dtype,
max_new_tokens: int,
):
"""
Run triton backend tests with specified TP size for a single prompt and model case.
"""
base_path = model_case.base
adaptor = model_case.adaptors[0]
tp_size = model_case.tp_size
print(
f"\n========== Testing triton backend with TP size {tp_size} for base '{base_path}' --- "
f"Prompt '{prompt[:50]}...' using adaptor '{adaptor.name}' ---"
)
with SRTRunner(
base_path,
torch_dtype=torch_dtype,
model_type="generation",
tp_size=tp_size,
lora_paths=[adaptor.name for adaptor in model_case.adaptors],
max_loras_per_batch=model_case.max_loras_per_batch,
lora_backend=BACKEND,
disable_cuda_graph=True,
disable_radix_cache=True,
mem_fraction_static=0.88,
disable_custom_all_reduce=True,
) as srt_runner:
srt_outputs = srt_runner.forward(
[prompt], max_new_tokens=max_new_tokens, lora_paths=[adaptor.name]
)
with HFRunner(
base_path, torch_dtype=torch_dtype, model_type="generation"
) as hf_runner:
hf_outputs = hf_runner.forward(
[prompt], max_new_tokens=max_new_tokens, lora_paths=[adaptor.name]
)
with SRTRunner(
base_path,
torch_dtype=torch_dtype,
model_type="generation",
tp_size=tp_size,
mem_fraction_static=0.88,
disable_custom_all_reduce=True,
) as srt_runner:
srt_no_lora_outputs = srt_runner.forward(
[prompt], max_new_tokens=max_new_tokens
)
with HFRunner(
base_path,
torch_dtype=torch_dtype,
model_type="generation",
) as hf_runner:
hf_no_lora_outputs = hf_runner.forward(
[prompt], max_new_tokens=max_new_tokens
)
# Use individual adapter tolerances if set, otherwise use model defaults
prefill_tol = (
adaptor.prefill_tolerance
if adaptor.prefill_tolerance is not None
else model_case.prefill_tolerance
)
decode_tol = (
adaptor.decode_tolerance
if adaptor.decode_tolerance is not None
else model_case.decode_tolerance
)
rouge_tol = (
adaptor.rouge_l_tolerance
if adaptor.rouge_l_tolerance is not None
else model_case.rouge_l_tolerance
)
# Compare prefill stage logprobs (HF vs SRTRunner with LoRA)
hf_prefill = torch.tensor(hf_outputs.top_input_logprobs[0])
srt_prefill = torch.tensor(srt_outputs.top_input_logprobs[0])
max_prefill_diff = torch.max(torch.abs(hf_prefill - srt_prefill))
print("Max prefill diff (HF vs SRT):", max_prefill_diff)
# Compare decode stage logprobs
hf_decode = torch.tensor(hf_outputs.top_output_logprobs[0])
srt_decode = torch.tensor(srt_outputs.top_output_logprobs[0])
max_decode_diff = torch.max(torch.abs(hf_decode - srt_decode))
print("Max decode diff (HF vs SRT):", max_decode_diff)
srt_output_str = srt_outputs.output_strs[0].strip()
hf_output_str = hf_outputs.output_strs[0].strip()
rouge_score = calculate_rouge_l([srt_output_str], [hf_output_str])[0]
print("ROUGE-L score:", rouge_score)
print("SRT output:", srt_output_str)
print("HF output:", hf_output_str)
# Additional: compare prefill outputs between base model (no LoRA) and LoRA model for reference
hf_no_lora_prefill = torch.tensor(hf_no_lora_outputs.top_input_logprobs[0])
srt_no_lora_prefill = torch.tensor(srt_no_lora_outputs.top_input_logprobs[0])
print(
"Max diff (SRT base vs SRT LoRA prefill):",
torch.max(torch.abs(srt_no_lora_prefill - srt_prefill)),
)
print(
"Max diff (HF base vs HF LoRA prefill):",
torch.max(torch.abs(hf_no_lora_prefill - hf_prefill)),
)
if hf_prefill.shape[0] <= 100:
assert torch.all(torch.abs(hf_prefill - srt_prefill) < prefill_tol), (
f"Prefill logprobs mismatch for base '{base_path}', adaptor '{adaptor.name}', "
f"triton backend with TP {tp_size}, prompt: '{prompt[:50]}...'"
)
if hf_decode.shape[0] <= 100:
assert torch.all(torch.abs(hf_decode - srt_decode) < decode_tol), (
f"Decode logprobs mismatch for base '{base_path}', adaptor '{adaptor.name}', "
f"triton backend with TP {tp_size}, prompt: '{prompt[:50]}...'"
)
if rouge_score < rouge_tol:
raise AssertionError(
f"ROUGE-L score {rouge_score} below tolerance {rouge_tol} "
f"for base '{base_path}', adaptor '{adaptor.name}', triton backend with TP {tp_size}, prompt: '{prompt[:50]}...'"
)
def run_tp_batch(
self,
prompts: List[str],
model_case: LoRAModelCase,
torch_dtype: torch.dtype,
max_new_tokens: int,
tp_size: int,
):
# TODO: Implement batch processing version of run_tp
raise NotImplementedError(
"Batch processing version of run_tp is not implemented yet."
)
def _run_tp_on_model_cases(self, model_cases: List[LoRAModelCase]):
tp_list = [2] # Define TP sizes to iterate over
for model_case in model_cases:
# If skip_long_prompt is True, filter out prompts longer than 1000 characters
prompts = (
PROMPTS
if not model_case.skip_long_prompt
else [p for p in PROMPTS if len(p) < 1000]
)
for tp_size in tp_list:
model_case.tp_size = tp_size
for torch_dtype in TORCH_DTYPES:
for prompt in prompts:
self.run_tp(
prompt,
model_case,
torch_dtype,
max_new_tokens=32,
)
def test_ci_lora_models(self):
self._run_tp_on_model_cases(CI_LORA_MODELS)
def test_all_lora_models(self):
if is_in_ci():
return
# Retain ONLY_RUN check here
filtered_models = []
for model_case in ALL_OTHER_LORA_MODELS:
if "ONLY_RUN" in os.environ and os.environ["ONLY_RUN"] != model_case.base:
continue
filtered_models.append(model_case)
self._run_tp_on_model_cases(filtered_models)
if __name__ == "__main__":
try:
mp.set_start_method("spawn")
except RuntimeError:
pass
unittest.main(warnings="ignore")
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment