Unverified Commit 56a724eb authored by Qubitium-ModelCloud's avatar Qubitium-ModelCloud Committed by GitHub
Browse files

[QUANT] Add GPTQModel Dynamic Quantization + `lm_head` Quantization (#3790)


Signed-off-by: default avatarZX-ModelCloud <zx@modelcloud.ai>
Co-authored-by: default avatarZX-ModelCloud <zx@modelcloud.ai>
parent 583d6af7
......@@ -24,7 +24,7 @@ from sglang.srt.layers.vocab_parallel_embedding import (
)
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
from sglang.srt.model_loader.weight_utils import default_weight_loader
from sglang.srt.utils import make_layers
from sglang.srt.utils import add_prefix, make_layers
@torch.jit.script
......@@ -70,13 +70,14 @@ class Phi3SmallMLP(nn.Module):
2 * [self.intermediate_size],
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.up_proj",
prefix=add_prefix("up_proj", prefix),
)
self.down_proj = RowParallelLinear(
self.intermediate_size,
self.hidden_size,
bias=True,
quant_config=quant_config,
prefix=add_prefix("down_proj", prefix),
)
def forward(self, x):
......@@ -140,7 +141,7 @@ class Phi3SmallSelfAttention(nn.Module):
self.num_key_value_heads,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj",
prefix=add_prefix("qkv_proj", prefix),
)
self.dense = RowParallelLinear(
......@@ -148,7 +149,7 @@ class Phi3SmallSelfAttention(nn.Module):
self.hidden_size,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.o_proj",
prefix=add_prefix("o_proj", prefix),
)
if getattr(self.config, "rope_scaling", None) is not None:
......@@ -201,6 +202,7 @@ class Phi3SmallSelfAttention(nn.Module):
self.scale,
num_kv_heads=self.num_kv_heads_per_partion,
layer_id=layer_id,
prefix=add_prefix("attn", prefix),
)
def forward(
......@@ -234,13 +236,21 @@ class Phi3SmallDecoderLayer(nn.Module):
config: PretrainedConfig,
layer_id: int,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = Phi3SmallSelfAttention(
config, layer_id, quant_config=quant_config
config,
layer_id,
quant_config=quant_config,
prefix=add_prefix("self_attn", prefix),
)
self.mlp = Phi3SmallMLP(
config,
quant_config,
prefix=add_prefix("mlp", prefix),
)
self.mlp = Phi3SmallMLP(config, quant_config)
self.input_layernorm = nn.LayerNorm(
config.hidden_size, eps=config.layer_norm_epsilon
......@@ -284,15 +294,20 @@ class Phi3SmallModel(nn.Module):
self.config = config
self.embed_tokens = VocabParallelEmbedding(
config.vocab_size, config.hidden_size
config.vocab_size,
config.hidden_size,
prefix=add_prefix("embed_tokens", prefix),
)
self.mup_embedding_multiplier = config.mup_embedding_multiplier
self.start_layer, self.end_layer, self.layers = make_layers(
config.num_hidden_layers,
lambda prefix: Phi3SmallDecoderLayer(
config, int(prefix.split(".")[-1]), quant_config
config,
int(prefix.split(".")[-1]),
quant_config,
prefix=prefix,
),
prefix=f"{prefix}.layers",
prefix=add_prefix("layers", prefix),
)
self.final_layernorm = nn.LayerNorm(
......@@ -335,6 +350,7 @@ class Phi3SmallForCausalLM(nn.Module):
self,
config: Phi3Config,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
......@@ -344,7 +360,7 @@ class Phi3SmallForCausalLM(nn.Module):
self.model = Phi3SmallModel(
config=config,
quant_config=quant_config,
prefix="model",
prefix=add_prefix("model", prefix),
)
self.vocab_size = config.vocab_size
self.mup_width_multiplier = config.mup_width_multiplier
......@@ -354,6 +370,7 @@ class Phi3SmallForCausalLM(nn.Module):
org_num_embeddings=config.vocab_size,
padding_size=DEFAULT_VOCAB_PADDING_SIZE,
quant_config=quant_config,
prefix=add_prefix("lm_head", prefix),
)
if self.config.tie_word_embeddings:
self.lm_head.weight = self.model.embed_tokens.weight
......
......@@ -39,6 +39,7 @@ from sglang.srt.layers.vocab_parallel_embedding import (
)
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
from sglang.srt.model_loader.weight_utils import default_weight_loader
from sglang.srt.utils import add_prefix
class QWenMLP(nn.Module):
......@@ -48,6 +49,7 @@ class QWenMLP(nn.Module):
intermediate_size: int,
hidden_act: str = "silu",
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
self.gate_up_proj = MergedColumnParallelLinear(
......@@ -56,6 +58,7 @@ class QWenMLP(nn.Module):
bias=False,
gather_output=False,
quant_config=quant_config,
prefix=add_prefix("gate_up_proj", prefix),
)
self.c_proj = RowParallelLinear(
intermediate_size,
......@@ -63,6 +66,7 @@ class QWenMLP(nn.Module):
bias=False,
input_is_parallel=True,
quant_config=quant_config,
prefix=add_prefix("c_proj", prefix),
)
if hidden_act != "silu":
raise ValueError(
......@@ -88,6 +92,7 @@ class QWenAttention(nn.Module):
rope_theta: float = 10000,
rope_scaling: Optional[Dict[str, Any]] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
self.hidden_size = hidden_size
......@@ -104,6 +109,7 @@ class QWenAttention(nn.Module):
self.total_num_heads,
bias=True,
quant_config=quant_config,
prefix=add_prefix("c_attn", prefix),
)
self.c_proj = RowParallelLinear(
self.total_num_heads * self.head_dim,
......@@ -111,6 +117,7 @@ class QWenAttention(nn.Module):
bias=False,
input_is_parallel=True,
quant_config=quant_config,
prefix=add_prefix("c_proj", prefix),
)
self.rotary_emb = get_rope(
self.head_dim,
......@@ -126,6 +133,7 @@ class QWenAttention(nn.Module):
self.scaling,
num_kv_heads=self.num_heads,
layer_id=layer_id,
prefix=add_prefix("attn", prefix),
)
def forward(
......@@ -148,6 +156,7 @@ class QWenBlock(nn.Module):
config: PretrainedConfig,
layer_id,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
self.ln_1 = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
......@@ -162,6 +171,7 @@ class QWenBlock(nn.Module):
rope_scaling=rope_scaling,
layer_id=layer_id,
quant_config=quant_config,
prefix=add_prefix("attn", prefix),
)
self.ln_2 = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
......@@ -170,6 +180,7 @@ class QWenBlock(nn.Module):
config.hidden_size,
config.intermediate_size // 2,
quant_config=quant_config,
prefix=add_prefix("mlp", prefix),
)
def forward(
......@@ -201,6 +212,7 @@ class QWenModel(nn.Module):
self,
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
self.config = config
......@@ -210,10 +222,16 @@ class QWenModel(nn.Module):
self.wte = VocabParallelEmbedding(
vocab_size,
config.hidden_size,
prefix=add_prefix("wte", prefix),
)
self.h = nn.ModuleList(
[
QWenBlock(config, i, quant_config=quant_config)
QWenBlock(
config,
i,
quant_config=quant_config,
prefix=add_prefix(f"h.{i}", prefix),
)
for i in range(config.num_hidden_layers)
]
)
......@@ -242,12 +260,17 @@ class QWenLMHeadModel(nn.Module):
self,
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
self.config = config
self.transformer = QWenModel(config, quant_config=quant_config)
self.transformer = QWenModel(
config, quant_config=quant_config, prefix=add_prefix("transformer", prefix)
)
vocab_size = ((config.vocab_size + 63) // 64) * 64
self.lm_head = ParallelLMHead(vocab_size, config.hidden_size)
self.lm_head = ParallelLMHead(
vocab_size, config.hidden_size, prefix=add_prefix("lm_head", prefix)
)
self.logits_processor = LogitsProcessor(config)
@torch.no_grad()
......
......@@ -15,7 +15,7 @@
# Adapted from llama2.py
# Modify details for the adaptation of Qwen2 model.
"""Inference-only Qwen2 model compatible with HuggingFace weights."""
from readline import add_history
from typing import Any, Dict, Iterable, Optional, Tuple
import torch
......@@ -46,7 +46,7 @@ from sglang.srt.model_loader.weight_utils import (
default_weight_loader,
kv_cache_scales_loader,
)
from sglang.srt.utils import make_layers
from sglang.srt.utils import add_prefix, make_layers
Qwen2Config = None
......@@ -58,6 +58,7 @@ class Qwen2MLP(nn.Module):
intermediate_size: int,
hidden_act: str,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.gate_up_proj = MergedColumnParallelLinear(
......@@ -65,12 +66,14 @@ class Qwen2MLP(nn.Module):
[intermediate_size] * 2,
bias=False,
quant_config=quant_config,
prefix=add_prefix("gate_up_proj", prefix),
)
self.down_proj = RowParallelLinear(
intermediate_size,
hidden_size,
bias=False,
quant_config=quant_config,
prefix=add_prefix("down_proj", prefix),
)
if hidden_act != "silu":
raise ValueError(
......@@ -97,6 +100,7 @@ class Qwen2Attention(nn.Module):
rope_scaling: Optional[Dict[str, Any]] = None,
max_position_embeddings: int = 32768,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = hidden_size
......@@ -128,12 +132,14 @@ class Qwen2Attention(nn.Module):
self.total_num_kv_heads,
bias=True,
quant_config=quant_config,
prefix=add_prefix("qkv_proj", prefix),
)
self.o_proj = RowParallelLinear(
self.total_num_heads * self.head_dim,
hidden_size,
bias=False,
quant_config=quant_config,
prefix=add_prefix("o_proj", prefix),
)
self.rotary_emb = get_rope(
......@@ -149,6 +155,7 @@ class Qwen2Attention(nn.Module):
self.scaling,
num_kv_heads=self.num_kv_heads,
layer_id=layer_id,
prefix=add_prefix("attn", prefix),
)
def forward(
......@@ -171,6 +178,7 @@ class Qwen2DecoderLayer(nn.Module):
config: Qwen2Config,
layer_id: int = 0,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
......@@ -186,12 +194,14 @@ class Qwen2DecoderLayer(nn.Module):
rope_scaling=rope_scaling,
max_position_embeddings=max_position_embeddings,
quant_config=quant_config,
prefix=add_prefix("self_attn", prefix),
)
self.mlp = Qwen2MLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
quant_config=quant_config,
prefix=add_prefix("mlp", prefix),
)
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(
......@@ -228,6 +238,7 @@ class Qwen2Model(nn.Module):
self,
config: Qwen2Config,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
......@@ -237,6 +248,7 @@ class Qwen2Model(nn.Module):
config.vocab_size,
config.hidden_size,
quant_config=quant_config,
prefix=add_prefix("embed_tokens", prefix),
)
self.layers = make_layers(
config.num_hidden_layers,
......@@ -244,7 +256,9 @@ class Qwen2Model(nn.Module):
layer_id=idx,
config=config,
quant_config=quant_config,
prefix=prefix,
),
prefix=add_prefix("layers", prefix),
)
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
......@@ -325,16 +339,22 @@ class Qwen2ForCausalLM(nn.Module):
self,
config: Qwen2Config,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
self.quant_config = quant_config
self.model = Qwen2Model(config, quant_config=quant_config)
self.model = Qwen2Model(
config, quant_config=quant_config, prefix=add_prefix("model", prefix)
)
if config.tie_word_embeddings:
self.lm_head = self.model.embed_tokens
else:
self.lm_head = ParallelLMHead(
config.vocab_size, config.hidden_size, quant_config=quant_config
config.vocab_size,
config.hidden_size,
quant_config=quant_config,
prefix=add_prefix("lm_head", prefix),
)
self.logits_processor = LogitsProcessor(config)
self.pooler = Pooler(pooling_type=PoolingType.LAST, normalize=True)
......
......@@ -52,6 +52,7 @@ from sglang.srt.model_executor.forward_batch_info import ForwardBatch
from sglang.srt.model_loader.weight_utils import default_weight_loader
from sglang.srt.models.qwen2 import Qwen2Model
from sglang.srt.models.qwen2_vl import Qwen2VLImageInputs, Qwen2VLVideoInputs
from sglang.srt.utils import add_prefix
logger = logging.getLogger(__name__)
......@@ -65,16 +66,29 @@ class Qwen2_5_VLMLP(nn.Module):
bias: bool = True,
hidden_act="silu",
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
self.gate_proj = ColumnParallelLinear(
in_features, hidden_features, bias=bias, quant_config=quant_config
in_features,
hidden_features,
bias=bias,
quant_config=quant_config,
prefix=add_prefix("gate_proj", prefix),
)
self.up_proj = ColumnParallelLinear(
in_features, hidden_features, bias=bias, quant_config=quant_config
in_features,
hidden_features,
bias=bias,
quant_config=quant_config,
prefix=add_prefix("up_proj", prefix),
)
self.down_proj = RowParallelLinear(
hidden_features, in_features, bias=bias, quant_config=quant_config
hidden_features,
in_features,
bias=bias,
quant_config=quant_config,
prefix=add_prefix("down_proj", prefix),
)
self.act = ACT2FN[hidden_act]
......@@ -98,6 +112,7 @@ class Qwen2_5_VisionBlock(nn.Module):
norm_layer: Type[nn.Module] = None,
attn_implementation: Optional[str] = "sdpa",
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
if norm_layer is None:
......@@ -123,9 +138,14 @@ class Qwen2_5_VisionBlock(nn.Module):
use_full_precision_softmax=use_full_precision_softmax,
flatten_batch=True,
quant_config=quant_config,
prefix=add_prefix("attn", prefix),
)
self.mlp = Qwen2_5_VLMLP(
dim, intermediate_dim, hidden_act=hidden_act, quant_config=quant_config
dim,
intermediate_dim,
hidden_act=hidden_act,
quant_config=quant_config,
prefix=add_prefix("mlp", prefix),
)
def forward(
......@@ -178,6 +198,7 @@ class Qwen2_5_VisionPatchMerger(nn.Module):
context_dim: int,
spatial_merge_size: int = 2,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = context_dim * (spatial_merge_size**2)
......@@ -189,10 +210,15 @@ class Qwen2_5_VisionPatchMerger(nn.Module):
self.hidden_size,
bias=True,
quant_config=quant_config,
prefix=add_prefix("mlp.0", prefix),
),
nn.GELU(),
RowParallelLinear(
self.hidden_size, dim, bias=True, quant_config=quant_config
self.hidden_size,
dim,
bias=True,
quant_config=quant_config,
prefix=add_prefix("mlp.2", prefix),
),
]
)
......@@ -250,6 +276,7 @@ class Qwen2_5_VisionTransformer(nn.Module):
vision_config: Qwen2_5_VLVisionConfig,
norm_eps: float = 1e-6,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
......@@ -286,8 +313,9 @@ class Qwen2_5_VisionTransformer(nn.Module):
norm_layer=norm_layer,
attn_implementation="sdpa",
quant_config=quant_config,
prefix=add_prefix(f"blocks.{i}", prefix),
)
for _ in range(depth)
for i in range(depth)
]
)
self.merger = Qwen2_5_VisionPatchMerger(
......@@ -295,6 +323,7 @@ class Qwen2_5_VisionTransformer(nn.Module):
context_dim=hidden_size,
spatial_merge_size=spatial_merge_size,
quant_config=quant_config,
prefix=add_prefix("merger", prefix),
)
def get_window_index(self, grid_thw):
......@@ -447,6 +476,7 @@ class Qwen2_5_VLForConditionalGeneration(nn.Module):
self,
config: Qwen2VLConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
......@@ -457,15 +487,23 @@ class Qwen2_5_VLForConditionalGeneration(nn.Module):
# NOTE: Qwen2-VL vision encoder does not support any
# quantization method now.
quant_config=None,
prefix=add_prefix("visual", prefix),
)
self.model = Qwen2Model(config, quant_config)
self.model = Qwen2Model(
config,
quant_config,
prefix=add_prefix("model", prefix),
)
if config.tie_word_embeddings:
self.lm_head = self.model.embed_tokens
else:
self.lm_head = ParallelLMHead(
config.vocab_size, config.hidden_size, quant_config=quant_config
config.vocab_size,
config.hidden_size,
quant_config=quant_config,
prefix=add_prefix("lm_head", prefix),
)
self.logits_processor = LogitsProcessor(config)
......
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
......@@ -29,8 +29,9 @@ class YiVLForCausalLM(LlavaLlamaForCausalLM):
self,
config: LlavaConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__(config, quant_config)
super().__init__(config, quant_config, prefix=prefix)
self.multi_modal_projector = YiVLMultiModalProjector(self.config)
self.vision_tower_subfolder = self.config.mm_vision_tower.replace(
......
This diff is collapsed.
......@@ -12,6 +12,7 @@ suites = {
"models/test_generation_models.py",
"models/test_qwen_models.py",
"models/test_reward_models.py",
"test_gptqmodel_dynamic.py",
"test_abort.py",
"test_chunked_prefill.py",
"test_custom_allreduce.py",
......
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment