Unverified Commit 5039d547 authored by fzyzcjy's avatar fzyzcjy Committed by GitHub
Browse files

Support 2x8xH100 for Llama 4 (#5159)

parent d09a51f1
...@@ -27,6 +27,13 @@ from sglang.srt.distributed import ( ...@@ -27,6 +27,13 @@ from sglang.srt.distributed import (
get_tensor_model_parallel_world_size, get_tensor_model_parallel_world_size,
tensor_model_parallel_all_reduce, tensor_model_parallel_all_reduce,
) )
from sglang.srt.layers.dp_attention import (
dp_gather_partial,
dp_scatter,
get_attention_dp_size,
get_attention_tp_rank,
get_attention_tp_size,
)
from sglang.srt.layers.layernorm import RMSNorm from sglang.srt.layers.layernorm import RMSNorm
from sglang.srt.layers.linear import ( from sglang.srt.layers.linear import (
QKVParallelLinear, QKVParallelLinear,
...@@ -38,6 +45,7 @@ from sglang.srt.layers.quantization.base_config import QuantizationConfig ...@@ -38,6 +45,7 @@ from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.layers.radix_attention import RadixAttention from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.layers.rotary_embedding import get_rope from sglang.srt.layers.rotary_embedding import get_rope
from sglang.srt.layers.vocab_parallel_embedding import VocabParallelEmbedding from sglang.srt.layers.vocab_parallel_embedding import VocabParallelEmbedding
from sglang.srt.managers.schedule_batch import global_server_args_dict
from sglang.srt.model_executor.forward_batch_info import ForwardBatch from sglang.srt.model_executor.forward_batch_info import ForwardBatch
from sglang.srt.models.llama import LlamaForCausalLM, LlamaMLP from sglang.srt.models.llama import LlamaForCausalLM, LlamaMLP
from sglang.srt.utils import add_prefix, get_compiler_backend, make_layers from sglang.srt.utils import add_prefix, get_compiler_backend, make_layers
...@@ -143,20 +151,24 @@ class Llama4Attention(nn.Module): ...@@ -143,20 +151,24 @@ class Llama4Attention(nn.Module):
self.hidden_size = hidden_size self.hidden_size = hidden_size
self.use_rope = int((layer_id + 1) % 4 != 0) self.use_rope = int((layer_id + 1) % 4 != 0)
self.use_qk_norm = config.use_qk_norm and self.use_rope self.use_qk_norm = config.use_qk_norm and self.use_rope
tp_size = get_tensor_model_parallel_world_size()
self.dp_size = get_attention_dp_size()
attn_tp_rank = get_attention_tp_rank()
attn_tp_size = get_attention_tp_size()
self.total_num_heads = num_heads self.total_num_heads = num_heads
assert self.total_num_heads % tp_size == 0 assert self.total_num_heads % attn_tp_size == 0
self.num_heads = self.total_num_heads // tp_size self.num_heads = self.total_num_heads // attn_tp_size
self.total_num_kv_heads = num_kv_heads self.total_num_kv_heads = num_kv_heads
if self.total_num_kv_heads >= tp_size: if self.total_num_kv_heads >= attn_tp_size:
# Number of KV heads is greater than TP size, so we partition # Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs. # the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % tp_size == 0 assert self.total_num_kv_heads % attn_tp_size == 0
else: else:
# Number of KV heads is less than TP size, so we replicate # Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs. # the KV heads across multiple tensor parallel GPUs.
assert tp_size % self.total_num_kv_heads == 0 assert attn_tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size) self.num_kv_heads = max(1, self.total_num_kv_heads // attn_tp_size)
self.head_dim = config.head_dim self.head_dim = config.head_dim
self.q_size = self.num_heads * self.head_dim self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim self.kv_size = self.num_kv_heads * self.head_dim
...@@ -183,6 +195,8 @@ class Llama4Attention(nn.Module): ...@@ -183,6 +195,8 @@ class Llama4Attention(nn.Module):
bias=bias, bias=bias,
quant_config=quant_config, quant_config=quant_config,
prefix=add_prefix("qkv_proj", prefix), prefix=add_prefix("qkv_proj", prefix),
tp_rank=attn_tp_rank,
tp_size=attn_tp_size,
) )
self.o_proj = RowParallelLinear( self.o_proj = RowParallelLinear(
...@@ -191,6 +205,9 @@ class Llama4Attention(nn.Module): ...@@ -191,6 +205,9 @@ class Llama4Attention(nn.Module):
bias=bias_o_proj, bias=bias_o_proj,
quant_config=quant_config, quant_config=quant_config,
prefix=add_prefix("o_proj", prefix), prefix=add_prefix("o_proj", prefix),
tp_rank=attn_tp_rank,
tp_size=attn_tp_size,
reduce_results=False,
) )
is_neox_style = True is_neox_style = True
is_gguf = quant_config and quant_config.get_name() == "gguf" is_gguf = quant_config and quant_config.get_name() == "gguf"
...@@ -274,6 +291,9 @@ class Llama4DecoderLayer(nn.Module): ...@@ -274,6 +291,9 @@ class Llama4DecoderLayer(nn.Module):
rope_theta = config.rope_theta rope_theta = config.rope_theta
rope_scaling = config.rope_scaling rope_scaling = config.rope_scaling
max_position_embeddings = config.max_position_embeddings max_position_embeddings = config.max_position_embeddings
self.dp_size = get_attention_dp_size()
self.attn_tp_size = get_attention_tp_size()
self.attn_tp_rank = get_attention_tp_rank()
self.self_attn = Llama4Attention( self.self_attn = Llama4Attention(
config=config, config=config,
...@@ -316,6 +336,9 @@ class Llama4DecoderLayer(nn.Module): ...@@ -316,6 +336,9 @@ class Llama4DecoderLayer(nn.Module):
forward_batch: ForwardBatch, forward_batch: ForwardBatch,
residual: Optional[torch.Tensor], residual: Optional[torch.Tensor],
) -> Tuple[torch.Tensor, torch.Tensor]: ) -> Tuple[torch.Tensor, torch.Tensor]:
if hidden_states.shape[0] == 0:
residual = hidden_states
else:
# Self Attention # Self Attention
if residual is None: if residual is None:
residual = hidden_states residual = hidden_states
...@@ -328,9 +351,43 @@ class Llama4DecoderLayer(nn.Module): ...@@ -328,9 +351,43 @@ class Llama4DecoderLayer(nn.Module):
forward_batch=forward_batch, forward_batch=forward_batch,
) )
# Gather
if get_tensor_model_parallel_world_size() > 1:
# all gather and all reduce
if self.dp_size != 1:
if self.attn_tp_rank == 0:
hidden_states += residual
hidden_states, local_hidden_states = (
forward_batch.gathered_buffer,
hidden_states,
)
dp_gather_partial(hidden_states, local_hidden_states, forward_batch)
dp_scatter(residual, hidden_states, forward_batch)
hidden_states = self.post_attention_layernorm(hidden_states)
else:
hidden_states = tensor_model_parallel_all_reduce(hidden_states)
hidden_states, residual = self.post_attention_layernorm(
hidden_states, residual
)
else:
hidden_states, residual = self.post_attention_layernorm(
hidden_states, residual
)
# Fully Connected # Fully Connected
hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
hidden_states = self.feed_forward(hidden_states) hidden_states = self.feed_forward(hidden_states)
# TODO(ch-wan): ues reduce-scatter in MLP to avoid this scatter
# Scatter
if self.dp_size != 1:
# important: forward batch.gathered_buffer is used both after scatter and after gather.
# be careful about this!
hidden_states, global_hidden_states = (
forward_batch.gathered_buffer[: forward_batch.input_ids.shape[0]],
hidden_states,
)
dp_scatter(hidden_states, global_hidden_states, forward_batch)
return hidden_states, residual return hidden_states, residual
...@@ -350,6 +407,7 @@ class Llama4Model(nn.Module): ...@@ -350,6 +407,7 @@ class Llama4Model(nn.Module):
config.hidden_size, config.hidden_size,
quant_config=quant_config, quant_config=quant_config,
prefix=add_prefix("embed_tokens", prefix), prefix=add_prefix("embed_tokens", prefix),
enable_tp=not global_server_args_dict["enable_dp_attention"],
) )
self.layers = make_layers( self.layers = make_layers(
config.num_hidden_layers, config.num_hidden_layers,
...@@ -385,6 +443,7 @@ class Llama4Model(nn.Module): ...@@ -385,6 +443,7 @@ class Llama4Model(nn.Module):
forward_batch, forward_batch,
residual, residual,
) )
if not forward_batch.forward_mode.is_idle():
hidden_states, _ = self.norm(hidden_states, residual) hidden_states, _ = self.norm(hidden_states, residual)
if len(aux_hidden_states) == 0: if len(aux_hidden_states) == 0:
...@@ -394,7 +453,6 @@ class Llama4Model(nn.Module): ...@@ -394,7 +453,6 @@ class Llama4Model(nn.Module):
class Llama4ForCausalLM(LlamaForCausalLM): class Llama4ForCausalLM(LlamaForCausalLM):
packed_modules_mapping = { packed_modules_mapping = {
"qkv_proj": ["q_proj", "k_proj", "v_proj"], "qkv_proj": ["q_proj", "k_proj", "v_proj"],
"gate_up_proj": ["gate_proj", "up_proj"], "gate_up_proj": ["gate_proj", "up_proj"],
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment