Unverified Commit 4f564b9e authored by Zheng Li's avatar Zheng Li Committed by GitHub
Browse files

model: support qwen3-vl series (#10323)


Co-authored-by: default avatarocss884 <ocss.lin@gmail.com>
Co-authored-by: default avatarcao1zhg <653506626@qq.com>
Co-authored-by: default avataryhyang201 <yhyang201@gmail.com>
Co-authored-by: default avataryhyang201 <47235274+yhyang201@users.noreply.github.com>
Co-authored-by: default avatar瑀澈 <yuche.lz@alibaba-inc.com>
Co-authored-by: default avatarMick <mickjagger19@icloud.com>
Co-authored-by: default avatarYineng Zhang <me@zhyncs.com>
parent 98c3b04f
......@@ -749,6 +749,8 @@ multimodal_model_archs = [
"Qwen2AudioForConditionalGeneration",
"Qwen2VLForConditionalGeneration",
"Qwen2_5_VLForConditionalGeneration",
"Qwen3VLForConditionalGeneration",
"Qwen3VLMoeForConditionalGeneration",
"KimiVLForConditionalGeneration",
"InternVLChatModel",
"InternS1ForConditionalGeneration",
......
from typing import Optional, Union
from transformers import PretrainedConfig
from transformers.modeling_rope_utils import rope_config_validation
class Qwen3VLVisionConfig(PretrainedConfig):
model_type = "qwen3_vl"
base_config_key = "vision_config"
def __init__(
self,
depth=27,
hidden_size=1152,
hidden_act="gelu_pytorch_tanh",
intermediate_size=4304,
num_heads=16,
in_channels=3,
patch_size=16,
spatial_merge_size=2,
temporal_patch_size=2,
out_hidden_size=3584,
num_position_embeddings=2304,
deepstack_visual_indexes=[8, 16, 24],
initializer_range=0.02,
**kwargs,
):
super().__init__(**kwargs)
self.depth = depth
self.hidden_size = hidden_size
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.num_heads = num_heads
self.in_channels = in_channels
self.patch_size = patch_size
self.spatial_merge_size = spatial_merge_size
self.temporal_patch_size = temporal_patch_size
self.out_hidden_size = out_hidden_size
self.num_position_embeddings = num_position_embeddings
self.initializer_range = initializer_range
self.deepstack_visual_indexes = deepstack_visual_indexes
class Qwen3VLTextConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Qwen3VLTextModel`]. It is used to instantiate a
Qwen3-VL model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of
Qwen3-VL-4B-Instruct [Qwen/Qwen3-VL-4B-Instruct](https://huggingface.co/Qwen/Qwen3-VL-4B-Instruct).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 151936):
Vocabulary size of the Qwen3VL model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`Qwen3VLModel`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 22016):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
num_key_value_heads (`int`, *optional*, defaults to 32):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details, check out [this
paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to `32`.
head_dim (`int`, *optional*, defaults to 128):
The dimension of the head. If not specified, will default to `hidden_size // num_attention_heads`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 128000):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether the model's input and output word embeddings should be tied.
rope_theta (`float`, *optional*, defaults to 5000000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'llama3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`list[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`list[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
```python
>>> from transformers import Qwen3VLTextModel, Qwen3VLTextConfig
>>> # Initializing a Qwen3VL style configuration
>>> configuration = Qwen3VLTextConfig()
>>> # Initializing a model from the Qwen3-VL-7B style configuration
>>> model = Qwen3VLTextModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "qwen3_vl_text"
base_config_key = "text_config"
def __init__(
self,
vocab_size=151936,
hidden_size=4096,
intermediate_size=22016,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=32,
head_dim=128,
hidden_act="silu",
max_position_embeddings=128000,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
tie_word_embeddings=False,
rope_theta=5000000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.head_dim = head_dim
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
rope_config_validation(self, ignore_keys={"mrope_section", "mrope_interleaved"})
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
class Qwen3VLConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Qwen3VLModel`]. It is used to instantiate a
Qwen3-VL model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of
Qwen3-VL-4B-Instruct [Qwen/Qwen3-VL-4B-Instruct](https://huggingface.co/Qwen/Qwen3-VL-4B-Instruct).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
text_config (`Union[PreTrainedConfig, dict]`, *optional*, defaults to `Qwen3VLTextConfig`):
The config object or dictionary of the text backbone.
vision_config (`Union[PreTrainedConfig, dict]`, *optional*, defaults to `Qwen3VLVisionConfig`):
The config object or dictionary of the vision backbone.
image_token_id (`int`, *optional*, defaults to 151655):
The image token index to encode the image prompt.
video_token_id (`int`, *optional*, defaults to 151656):
The video token index to encode the image prompt.
vision_start_token_id (`int`, *optional*, defaults to 151652):
The start token index to encode the image prompt.
vision_end_token_id (`int`, *optional*, defaults to 151653):
The end token index to encode the image prompt.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie the word embeddings.
```python
>>> from transformers import Qwen3VLForConditionalGeneration, Qwen3VLConfig
>>> # Initializing a Qwen3-VL style configuration
>>> configuration = Qwen3VLConfig()
>>> # Initializing a model from the Qwen3-VL-4B style configuration
>>> model = Qwen3VLForConditionalGeneration(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "qwen3_vl"
sub_configs = {
"vision_config": Qwen3VLVisionConfig,
"text_config": Qwen3VLTextConfig,
}
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
text_config=None,
vision_config=None,
image_token_id=151655,
video_token_id=151656,
vision_start_token_id=151652,
vision_end_token_id=151653,
tie_word_embeddings=False,
**kwargs,
):
if isinstance(vision_config, dict):
self.vision_config = self.sub_configs["vision_config"](**vision_config)
elif vision_config is None:
self.vision_config = self.sub_configs["vision_config"]()
if isinstance(text_config, dict):
self.text_config = self.sub_configs["text_config"](**text_config)
elif text_config is None:
self.text_config = self.sub_configs["text_config"]()
self.image_token_id = image_token_id
self.video_token_id = video_token_id
self.vision_start_token_id = vision_start_token_id
self.vision_end_token_id = vision_end_token_id
super().__init__(**kwargs, tie_word_embeddings=tie_word_embeddings)
class Qwen3VLMoeTextConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Qwen3VLMoeTextModel`]. It is used to instantiate a
Qwen3-VL-MOE model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of
Qwen3-VL-30B-A3B-Instruct [Qwen/Qwen3-VL-30B-A3B-Instruct](https://huggingface.co/Qwen/Qwen3-VL-30B-A3B-Instruct).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 151936):
Vocabulary size of the Qwen2MoE model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`Qwen2MoeModel`]
hidden_size (`int`, *optional*, defaults to 2048):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 5632):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 24):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
num_key_value_heads (`int`, *optional*, defaults to 16):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 128000):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether the model's input and output word embeddings should be tied.
rope_theta (`float`, *optional*, defaults to 5000000.0):
The base period of the RoPE embeddings.
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
decoder_sparse_step (`int`, *optional*, defaults to 1):
The frequency of the MoE layer.
moe_intermediate_size (`int`, *optional*, defaults to 1408):
Intermediate size of the routed expert.
num_experts_per_tok (`int`, *optional*, defaults to 4):
Number of selected experts.
num_experts (`int`, *optional*, defaults to 60):
Number of routed experts.
norm_topk_prob (`bool`, *optional*, defaults to `True`):
Whether to normalize the topk probabilities.
mlp_only_layers (`List[int]`, *optional*, defaults to `[]`):
Indicate which layers use Qwen3VLMoeMLP rather than Qwen3VLMoeSparseMoeBlock
The list contains layer index, from 0 to num_layers-1 if we have num_layers layers
If `mlp_only_layers` is empty, `decoder_sparse_step` is used to determine the sparsity.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'llama3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
head_dim (`int`, *optional*):
The dimension of the head. If not specified, will default to `hidden_size // num_attention_heads`.
```python
>>> from transformers import Qwen3VLMoeForConditionalGeneration, Qwen3VLMoeConfig
>>> # Initializing a Qwen3VLMoe style configuration
>>> configuration = Qwen3VLMoeConfig()
>>> # Initializing a model from the Qwen3-VL-30B-A3B style configuration
>>> model = Qwen3VLMoeForConditionalGeneration(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "qwen3_vl_moe_text"
base_config_key = "text_config"
keys_to_ignore_at_inference = ["past_key_values"]
# Default tensor parallel plan for base model `Qwen3VLMoe`
base_model_tp_plan = {
"layers.*.self_attn.q_proj": "colwise",
"layers.*.self_attn.k_proj": "colwise",
"layers.*.self_attn.v_proj": "colwise",
"layers.*.self_attn.o_proj": "rowwise",
"layers.*.mlp.gate_proj": "colwise",
"layers.*.mlp.up_proj": "colwise",
"layers.*.mlp.down_proj": "rowwise",
}
base_model_pp_plan = {
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
"norm": (["hidden_states"], ["hidden_states"]),
}
def __init__(
self,
vocab_size=151936,
hidden_size=2048,
intermediate_size=5632,
num_hidden_layers=24,
num_attention_heads=16,
num_key_value_heads=16,
hidden_act="silu",
max_position_embeddings=128000,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
tie_word_embeddings=False,
rope_theta=5000000.0,
attention_bias=False,
attention_dropout=0.0,
decoder_sparse_step=1,
moe_intermediate_size=1408,
num_experts_per_tok=4,
num_experts=60,
norm_topk_prob=True,
mlp_only_layers=None,
rope_scaling=None,
head_dim=None,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.rope_scaling = rope_scaling
self.head_dim = head_dim or hidden_size // num_attention_heads
rope_config_validation(self, ignore_keys={"mrope_section", "mrope_interleaved"})
# MoE arguments
self.decoder_sparse_step = decoder_sparse_step
self.moe_intermediate_size = moe_intermediate_size
self.num_experts_per_tok = num_experts_per_tok
self.num_experts = num_experts
self.norm_topk_prob = norm_topk_prob
self.mlp_only_layers = [] if mlp_only_layers is None else mlp_only_layers
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
class Qwen3VLMoeVisionConfig(PretrainedConfig):
model_type = "qwen3_vl_moe"
base_config_key = "vision_config"
def __init__(
self,
depth=27,
hidden_size=1152,
hidden_act="gelu_pytorch_tanh",
intermediate_size=4304,
num_heads=16,
in_channels=3,
patch_size=16,
spatial_merge_size=2,
temporal_patch_size=2,
out_hidden_size=3584,
num_position_embeddings=2304,
deepstack_visual_indexes=[8, 16, 24],
initializer_range=0.02,
**kwargs,
):
super().__init__(**kwargs)
self.depth = depth
self.hidden_size = hidden_size
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.num_heads = num_heads
self.in_channels = in_channels
self.patch_size = patch_size
self.spatial_merge_size = spatial_merge_size
self.temporal_patch_size = temporal_patch_size
self.out_hidden_size = out_hidden_size
self.num_position_embeddings = num_position_embeddings
self.initializer_range = initializer_range
self.deepstack_visual_indexes = deepstack_visual_indexes
class Qwen3VLMoeConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Qwen3VLMoeModel`]. It is used to instantiate a
Qwen3-VL-MOE model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of
Qwen3-VL-30B-A3B-Instruct [Qwen/Qwen3-VL-30B-A3B-Instruct](https://huggingface.co/Qwen/Qwen3-VL-30B-A3B-Instruct).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
text_config (`Union[PreTrainedConfig, dict]`, *optional*, defaults to `Qwen3VLMoeTextConfig`):
The config object or dictionary of the text backbone.
vision_config (`Union[PreTrainedConfig, dict]`, *optional*, defaults to `Qwen3VLMoeVisionConfig`):
The config object or dictionary of the vision backbone.
image_token_id (`int`, *optional*, defaults to 151655):
The image token index to encode the image prompt.
video_token_id (`int`, *optional*, defaults to 151656):
The video token index to encode the image prompt.
vision_start_token_id (`int`, *optional*, defaults to 151652):
The start token index to encode the image prompt.
vision_end_token_id (`int`, *optional*, defaults to 151653):
The end token index to encode the image prompt.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie the word embeddings.
```python
>>> from transformers import Qwen3VLMoeForConditionalGeneration, Qwen3VLMoeConfig
>>> # Initializing a Qwen3-VL-MOE style configuration
>>> configuration = Qwen3VLMoeConfig()
>>> # Initializing a model from the Qwen3-VL-30B-A3B style configuration
>>> model = Qwen3VLMoeForConditionalGeneration(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "qwen3_vl_moe"
sub_configs = {
"vision_config": Qwen3VLMoeVisionConfig,
"text_config": Qwen3VLMoeTextConfig,
}
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
text_config=None,
vision_config=None,
image_token_id=151655,
video_token_id=151656,
vision_start_token_id=151652,
vision_end_token_id=151653,
tie_word_embeddings=False,
**kwargs,
):
if isinstance(vision_config, dict):
self.vision_config = self.sub_configs["vision_config"](**vision_config)
elif vision_config is None:
self.vision_config = self.sub_configs["vision_config"]()
if isinstance(text_config, dict):
self.text_config = self.sub_configs["text_config"](**text_config)
elif text_config is None:
self.text_config = self.sub_configs["text_config"]()
self.image_token_id = image_token_id
self.video_token_id = video_token_id
self.vision_start_token_id = vision_start_token_id
self.vision_end_token_id = vision_end_token_id
super().__init__(**kwargs, tie_word_embeddings=tie_word_embeddings)
__all__ = [
"Qwen3VLMoeConfig",
"Qwen3VLMoeVisionConfig",
"Qwen3VLConfig",
"Qwen3VLVisionConfig",
]
......@@ -1187,7 +1187,7 @@ class MRotaryEmbedding(RotaryEmbedding):
time_tensor_long = time_tensor.long()
t_index = time_tensor_long.flatten()
elif model_type == "qwen2_vl":
elif model_type in ("qwen2_vl", "qwen3_vl", "qwen3_vl_moe"):
t_index = (
torch.arange(llm_grid_t)
.view(-1, 1)
......
......@@ -507,6 +507,7 @@ def embed_mm_inputs(
Modality, Callable[[List[MultimodalDataItem]], torch.Tensor]
] = None,
placeholder_tokens: dict[Modality, List[int]] = None,
use_deepstack: bool = False,
) -> Optional[torch.Tensor]:
"""
Embed multimodal inputs and integrate them with text token embeddings.
......@@ -522,7 +523,7 @@ def embed_mm_inputs(
Returns:
Combined embedding tensor with multimodal content integrated
"""
other_info = {}
if mm_inputs_list is None:
return None
......@@ -532,7 +533,7 @@ def embed_mm_inputs(
for mm_inputs in mm_inputs_list:
item_flatten_list += [item for item in mm_inputs.mm_items if item is not None]
embeddings, masks = [], []
embeddings, masks, deepstack_embeddings = [], [], []
# 2. Get multimodal embedding separately
# Try get mm embedding if any
for modality in Modality.all():
......@@ -578,6 +579,12 @@ def embed_mm_inputs(
extend_length=extend_seq_lens,
items_offset_list=items_offsets,
)
if use_deepstack and embedding is not None:
embedding, deepstack_embedding = (
multimodal_model.separate_deepstack_embeds(embedding)
)
deepstack_embeddings += [deepstack_embedding]
embeddings += [embedding]
masks += [mask]
......@@ -591,13 +598,37 @@ def embed_mm_inputs(
inputs_embeds = input_embedding(input_ids)
# 4. scatter embeddings into input embedding
for embedding, mask in zip(embeddings, masks):
# deepstack embedding
if use_deepstack:
num_deepstack_embeddings = (
len(multimodal_model.deepstack_visual_indexes) if use_deepstack else 0
)
deepstack_embedding_shape = inputs_embeds.shape[:-1] + (
inputs_embeds.shape[-1] * num_deepstack_embeddings,
)
input_deepstack_embeds = torch.zeros(
deepstack_embedding_shape,
device=inputs_embeds.device,
dtype=inputs_embeds.dtype,
)
other_info["input_deepstack_embeds"] = input_deepstack_embeds
for i, embedding, mask in zip(range(len(embeddings)), embeddings, masks):
if embedding is None or mask is None:
continue
# in-place update
indices = torch.where(mask.squeeze(dim=-1))[0]
inputs_embeds[indices] = embedding.to(inputs_embeds.device, inputs_embeds.dtype)
return inputs_embeds
if use_deepstack:
input_deepstack_embeds[indices] = deepstack_embeddings[i].to(
inputs_embeds.device, inputs_embeds.dtype
)
return inputs_embeds, other_info
def general_mm_embed_routine(
......@@ -609,6 +640,7 @@ def general_mm_embed_routine(
Modality, Callable[[List[MultimodalDataItem]], torch.Tensor]
] = None,
placeholder_tokens: Optional[dict[Modality, List[int]]] = None,
use_deepstack: bool = False,
**kwargs,
) -> torch.Tensor:
"""
......@@ -620,6 +652,7 @@ def general_mm_embed_routine(
language_model: Base language model to use
data_embedding_funcs: A dictionary mapping from modality type to the corresponding embedding function.
placeholder_tokens: Token IDs for multimodal placeholders
use_deepstack: Whether to use deepstack embeddings
**kwargs: Additional arguments passed to language model
Returns:
......@@ -645,16 +678,20 @@ def general_mm_embed_routine(
for i, seq_len in enumerate(forward_batch.extend_seq_lens_cpu)
if forward_batch.mm_inputs[i] is not None
]
inputs_embeds = embed_mm_inputs(
inputs_embeds, other_info = embed_mm_inputs(
mm_inputs_list=mm_inputs_list,
extend_prefix_lens=extend_prefix_lens,
extend_seq_lens=extend_seq_lens,
input_ids=input_ids,
input_embedding=embed_tokens,
multimodal_model=multimodal_model,
input_embedding=embed_tokens,
data_embedding_func_mapping=data_embedding_funcs,
placeholder_tokens=placeholder_tokens,
use_deepstack=use_deepstack,
)
# add for qwen3_vl deepstack
if use_deepstack:
kwargs["input_deepstack_embeds"] = other_info["input_deepstack_embeds"]
# once used, mm_inputs is useless, considering chunked-prefill is disabled for multimodal models
# just being defensive here
forward_batch.mm_inputs = None
......
# Copyright 2025 Qwen Team
# Copyright 2025 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Inference-only Qwen3-VL model compatible with HuggingFace weights."""
import logging
from functools import lru_cache, partial
from typing import Callable, Iterable, List, Literal, Optional, Tuple, TypedDict, Union
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from transformers.activations import ACT2FN
from transformers.models.qwen2_5_vl.modeling_qwen2_5_vl import (
Qwen2_5_VisionRotaryEmbedding,
)
from sglang.srt.configs.qwen3_vl import Qwen3VLConfig, Qwen3VLVisionConfig
from sglang.srt.hf_transformers_utils import get_processor
from sglang.srt.layers.attention.vision import VisionAttention
from sglang.srt.layers.linear import ColumnParallelLinear, RowParallelLinear
from sglang.srt.layers.logits_processor import LogitsProcessor
from sglang.srt.layers.pooler import Pooler, PoolingType
from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.layers.vocab_parallel_embedding import ParallelLMHead
from sglang.srt.managers.mm_utils import (
MultiModalityDataPaddingPatternMultimodalTokens,
general_mm_embed_routine,
)
from sglang.srt.managers.schedule_batch import MultimodalDataItem, MultimodalInputs
from sglang.srt.model_executor.forward_batch_info import ForwardBatch, PPProxyTensors
from sglang.srt.model_loader.weight_utils import default_weight_loader
from sglang.srt.models.qwen2_vl import Qwen2VLVideoInputs
from sglang.srt.models.qwen3 import Qwen3Model
from sglang.srt.utils import add_prefix
logger = logging.getLogger(__name__)
# === Vision Encoder === #
class Qwen3_VisionMLP(nn.Module):
def __init__(
self,
in_features: int,
hidden_features: int,
bias: bool = True,
hidden_act="silu",
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
self.linear_fc1 = ColumnParallelLinear(
in_features,
hidden_features,
bias=bias,
quant_config=quant_config,
prefix=add_prefix("linear_fc1", prefix),
)
self.linear_fc2 = RowParallelLinear(
hidden_features,
in_features,
bias=bias,
quant_config=quant_config,
prefix=add_prefix("linear_fc2", prefix),
)
self.act = ACT2FN[hidden_act]
def forward(self, x: torch.Tensor):
x_fc1, _ = self.linear_fc1(x)
mlp_output, _ = self.linear_fc2(self.act(x_fc1))
return mlp_output
class Qwen3VLVisionPatchEmbed(nn.Module):
def __init__(self, config) -> None:
super().__init__()
self.patch_size = config.patch_size
self.temporal_patch_size = config.temporal_patch_size
self.in_channels = config.in_channels
self.embed_dim = config.hidden_size
kernel_size = [self.temporal_patch_size, self.patch_size, self.patch_size]
self.proj = nn.Conv3d(
self.in_channels,
self.embed_dim,
kernel_size=kernel_size,
stride=kernel_size,
bias=True,
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
target_dtype = self.proj.weight.dtype
hidden_states = hidden_states.view(
-1,
self.in_channels,
self.temporal_patch_size,
self.patch_size,
self.patch_size,
)
hidden_states = self.proj(hidden_states.to(dtype=target_dtype)).view(
-1, self.embed_dim
)
return hidden_states
class Qwen3_VisionBlock(nn.Module):
def __init__(
self,
dim: int,
num_heads: int,
intermediate_dim: int,
hidden_act="silu",
norm_layer: Optional[Callable[[int], nn.Module]] = None,
attn_implementation: Optional[str] = "sdpa",
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
if norm_layer is None:
norm_layer = partial(nn.LayerNorm, eps=1e-6)
self.norm1 = norm_layer(dim)
self.norm2 = norm_layer(dim)
if attn_implementation == "sdpa":
softmax_in_single_precision = False
qkv_backend = "sdpa"
flatten_batch = True
elif attn_implementation == "flash_attention_2":
softmax_in_single_precision = False
qkv_backend = "triton_attn"
flatten_batch = True
elif attn_implementation == "eager":
softmax_in_single_precision = True
qkv_backend = "sdpa"
flatten_batch = True
elif attn_implementation == "flash_attention_3":
softmax_in_single_precision = False
qkv_backend = "fa3"
flatten_batch = True
self.attn = VisionAttention(
embed_dim=dim,
num_heads=num_heads,
projection_size=dim,
use_qkv_parallel=True,
rotary_embed="normal",
proj_bias=True,
qkv_backend=qkv_backend,
softmax_in_single_precision=softmax_in_single_precision,
flatten_batch=flatten_batch,
quant_config=quant_config,
prefix=add_prefix("attn", prefix),
)
self.mlp = Qwen3_VisionMLP(
dim,
intermediate_dim,
hidden_act=hidden_act,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.mlp",
)
def forward(
self,
x: torch.Tensor,
cu_seqlens: torch.Tensor,
position_embeddings: torch.Tensor,
) -> torch.Tensor:
hidden_states = self.norm1(x)
hidden_states = rearrange(hidden_states, "s b ... -> b s ...")
attn = self.attn(
hidden_states,
cu_seqlens=cu_seqlens,
position_embeddings=position_embeddings,
)
attn = rearrange(attn, "b s ... -> s b ...")
x = x + attn
norm2 = self.norm2(x)
mlp = self.mlp(norm2)
x = x + mlp
return x
class Qwen3_VisionPatchMerger(nn.Module):
def __init__(
self,
dim: int,
context_dim: int,
norm_layer: Optional[Callable[[int], nn.Module]] = None,
spatial_merge_size: int = 2,
use_postshuffle_norm: bool = False,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = context_dim * (spatial_merge_size**2)
self.use_postshuffle_norm = use_postshuffle_norm
if norm_layer is None:
norm_layer = partial(nn.LayerNorm, eps=1e-6)
self.norm = norm_layer(
self.hidden_size if use_postshuffle_norm else context_dim
)
self.linear_fc1 = ColumnParallelLinear(
self.hidden_size,
self.hidden_size,
bias=True,
quant_config=quant_config,
prefix=add_prefix("linear_fc1", prefix),
)
self.act_fn = nn.GELU()
self.linear_fc2 = RowParallelLinear(
self.hidden_size,
dim,
bias=True,
quant_config=quant_config,
prefix=add_prefix("linear_fc2", prefix),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.use_postshuffle_norm:
x = self.norm(x.view(-1, self.hidden_size))
else:
x = self.norm(x).view(-1, self.hidden_size)
x_parallel, _ = self.linear_fc1(x)
x_parallel = self.act_fn(x_parallel)
out, _ = self.linear_fc2(x_parallel)
return out
class Qwen3_VisionTransformer(nn.Module):
def __init__(
self,
vision_config: Qwen3VLVisionConfig,
norm_eps: float = 1e-6,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = vision_config.hidden_size
self.num_heads = vision_config.num_heads
self.num_position_embeddings = vision_config.num_position_embeddings
self.patch_size = vision_config.patch_size
self.spatial_merge_size = vision_config.spatial_merge_size
self.spatial_merge_unit = self.spatial_merge_size**2
self.temporal_patch_size = vision_config.temporal_patch_size
self.deepstack_visual_indexes = vision_config.deepstack_visual_indexes
self.patch_embed = Qwen3VLVisionPatchEmbed(config=vision_config)
self.pos_embed = nn.Embedding(self.num_position_embeddings, self.hidden_size)
norm_layer = partial(nn.LayerNorm, eps=norm_eps)
head_dim = self.hidden_size // self.num_heads
self.rotary_pos_emb = Qwen2_5_VisionRotaryEmbedding(head_dim // 2)
self.blocks = nn.ModuleList(
[
Qwen3_VisionBlock(
dim=self.hidden_size,
num_heads=self.num_heads,
intermediate_dim=vision_config.intermediate_size,
hidden_act=vision_config.hidden_act,
norm_layer=norm_layer,
attn_implementation="flash_attention_3",
quant_config=quant_config,
prefix=add_prefix(f"blocks.{layer_idx}", prefix),
)
for layer_idx in range(vision_config.depth)
]
)
self.merger = Qwen3_VisionPatchMerger(
dim=vision_config.out_hidden_size,
context_dim=self.hidden_size,
norm_layer=norm_layer,
spatial_merge_size=self.spatial_merge_size,
quant_config=quant_config,
prefix=add_prefix("merger", prefix),
)
self.deepstack_merger_list = nn.ModuleList(
[
Qwen3_VisionPatchMerger(
dim=vision_config.out_hidden_size,
context_dim=self.hidden_size,
spatial_merge_size=self.spatial_merge_size,
use_postshuffle_norm=True,
norm_layer=norm_layer,
quant_config=quant_config,
prefix=add_prefix(f"deepstack_merger_list.{layer_idx}", prefix),
)
for layer_idx in range(len(self.deepstack_visual_indexes))
]
)
@property
def dtype(self) -> torch.dtype:
return self.patch_embed.proj.weight.dtype
@property
def device(self) -> torch.device:
return self.patch_embed.proj.weight.device
def rot_pos_emb(self, grid_thw):
pos_ids = []
for t, h, w in grid_thw:
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
hpos_ids = hpos_ids.reshape(
h // self.spatial_merge_size,
self.spatial_merge_size,
w // self.spatial_merge_size,
self.spatial_merge_size,
)
hpos_ids = hpos_ids.permute(0, 2, 1, 3)
hpos_ids = hpos_ids.flatten()
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
wpos_ids = wpos_ids.reshape(
h // self.spatial_merge_size,
self.spatial_merge_size,
w // self.spatial_merge_size,
self.spatial_merge_size,
)
wpos_ids = wpos_ids.permute(0, 2, 1, 3)
wpos_ids = wpos_ids.flatten()
pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
pos_ids = torch.cat(pos_ids, dim=0)
max_grid_size = grid_thw[:, 1:].max()
rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
return rotary_pos_emb
def fast_pos_embed_interpolate(self, grid_thw):
num_grid_per_side = int(self.num_position_embeddings**0.5)
idx_list = [[] for _ in range(4)]
weight_list = [[] for _ in range(4)]
# TODO: use torch instand of np
for t, h, w in grid_thw:
h_idxs = np.linspace(0, num_grid_per_side - 1, h)
w_idxs = np.linspace(0, num_grid_per_side - 1, w)
h_idxs_floor = h_idxs.astype(int)
w_idxs_floor = w_idxs.astype(int)
h_idxs_ceil = (h_idxs.astype(int) + 1).clip(max=num_grid_per_side - 1)
w_idxs_ceil = (w_idxs.astype(int) + 1).clip(max=num_grid_per_side - 1)
dh = h_idxs - h_idxs_floor
dw = w_idxs - w_idxs_floor
idx_list[0].extend(
((h_idxs_floor * num_grid_per_side)[None].T + w_idxs_floor[None])
.flatten()
.tolist()
* t
)
idx_list[1].extend(
((h_idxs_floor * num_grid_per_side)[None].T + w_idxs_ceil[None])
.flatten()
.tolist()
* t
)
idx_list[2].extend(
((h_idxs_ceil * num_grid_per_side)[None].T + w_idxs_floor[None])
.flatten()
.tolist()
* t
)
idx_list[3].extend(
((h_idxs_ceil * num_grid_per_side)[None].T + w_idxs_ceil[None])
.flatten()
.tolist()
* t
)
weight_list[0].extend(
((1 - dh)[None].T * (1 - dw)[None]).flatten().tolist() * t
)
weight_list[1].extend(((1 - dh)[None].T * dw[None]).flatten().tolist() * t)
weight_list[2].extend((dh[None].T * (1 - dw)[None]).flatten().tolist() * t)
weight_list[3].extend((dh[None].T * dw[None]).flatten().tolist() * t)
device = self.pos_embed.weight.device
dtype = self.pos_embed.weight.dtype
p0 = (
self.pos_embed(torch.tensor(idx_list[0], dtype=torch.long, device=device))
* torch.tensor(weight_list[0], dtype=dtype, device=device)[:, None]
)
p1 = (
self.pos_embed(torch.tensor(idx_list[1], dtype=torch.long, device=device))
* torch.tensor(weight_list[1], dtype=dtype, device=device)[:, None]
)
p2 = (
self.pos_embed(torch.tensor(idx_list[2], dtype=torch.long, device=device))
* torch.tensor(weight_list[2], dtype=dtype, device=device)[:, None]
)
p3 = (
self.pos_embed(torch.tensor(idx_list[3], dtype=torch.long, device=device))
* torch.tensor(weight_list[3], dtype=dtype, device=device)[:, None]
)
patch_pos_embeds = p0 + p1 + p2 + p3
patch_pos_embeds = patch_pos_embeds.split([t * h * w for t, h, w in grid_thw])
patch_pos_embeds_permute = []
m_size = self.spatial_merge_size
for pos_embed, (t, h, w) in zip(patch_pos_embeds, grid_thw):
pos_embed = (
pos_embed.view(t, h // m_size, m_size, w // m_size, m_size, -1)
.permute(0, 1, 3, 2, 4, 5)
.flatten(0, 4)
)
patch_pos_embeds_permute.append(pos_embed)
patch_pos_embeds = torch.cat(patch_pos_embeds_permute)
return patch_pos_embeds
def forward(
self,
x: torch.Tensor,
grid_thw: torch.Tensor,
) -> torch.Tensor:
x = x.to(device=self.device, dtype=self.dtype)
x = self.patch_embed(x)
pos_embeds = self.fast_pos_embed_interpolate(grid_thw)
x = x + pos_embeds
rotary_pos_emb = self.rot_pos_emb(grid_thw)
seq_len, _ = x.size()
rotary_pos_emb = rotary_pos_emb.to(x.device)
rotary_pos_emb = rotary_pos_emb.reshape(seq_len, -1)
emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
position_embeddings = (emb.cos(), emb.sin())
# compute cu_seqlens
cu_seqlens = torch.cat(
[
torch.tensor([0], device=grid_thw.device),
(grid_thw[:, 0] * grid_thw[:, 1] * grid_thw[:, 2]).cumsum(dim=0),
]
)
cu_seqlens = F.pad(cu_seqlens, (1, 0), "constant", 0)
# max_seqlen, seqlens = self.compute_attn_mask_seqlen(cu_seqlens)
x = x.unsqueeze(1)
deepstack_feature_lists = []
num_deepstack_captured = 0
for layer_num, blk in enumerate(self.blocks):
x = blk(x, cu_seqlens=cu_seqlens, position_embeddings=position_embeddings)
if layer_num in self.deepstack_visual_indexes:
deepstack_feature = self.deepstack_merger_list[num_deepstack_captured](
x
)
deepstack_feature_lists.append(deepstack_feature)
num_deepstack_captured += 1
x = self.merger(x)
hidden_states = torch.cat(
[x] + deepstack_feature_lists, dim=1
) # [seq_len, hidden_size * (1 + depth_of_deepstack)]
return hidden_states
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("attn.qkv.", "attn.q.", "q"),
("attn.qkv.", "attn.k.", "k"),
("attn.qkv.", "attn.v.", "v"),
]
params_dict = dict(self.named_parameters(remove_duplicate=False))
loaded_params: set[str] = set()
for name, loaded_weight in weights:
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
param = params_dict[name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
cached_get_processor = lru_cache(get_processor)
class Qwen3LLMModel(Qwen3Model):
def __init__(
self,
*,
config: Qwen3VLConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__(config=config, quant_config=quant_config, prefix=prefix)
if not self.pp_group.is_first_rank:
assert self.start_layer >= len(
config.vision_config.deepstack_visual_indexes
), "start_layer should be greater than or equal to len(deepstack_visual_indexes)"
self.hidden_size = config.hidden_size
self.deepstack_embed_to_decoder_layer = range(
len(config.vision_config.deepstack_visual_indexes)
)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
forward_batch: ForwardBatch,
input_embeds: torch.Tensor = None,
pp_proxy_tensors: Optional[PPProxyTensors] = None,
input_deepstack_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, PPProxyTensors]:
if self.pp_group.is_first_rank:
if input_embeds is None:
hidden_states = self.embed_tokens(input_ids)
else:
hidden_states = input_embeds
residual = None
else:
assert pp_proxy_tensors is not None
hidden_states = pp_proxy_tensors["hidden_states"]
residual = pp_proxy_tensors["residual"]
aux_hidden_states = []
for layer_idx, layer in enumerate(
self.layers[self.start_layer : self.end_layer]
):
layer_idx = layer_idx + self.start_layer
if layer_idx in self.layers_to_capture:
aux_hidden_states.append(
hidden_states + residual if residual is not None else hidden_states
)
hidden_states, residual = layer(
positions,
hidden_states,
forward_batch,
residual,
)
# process deepstack
if (
input_deepstack_embeds is not None
and layer_idx in self.deepstack_embed_to_decoder_layer
):
sep = self.hidden_size * layer_idx
hidden_states = (
hidden_states
+ input_deepstack_embeds[:, sep : sep + self.hidden_size]
)
if not self.pp_group.is_last_rank:
return PPProxyTensors(
{
"hidden_states": hidden_states,
"residual": residual,
}
)
else:
if hidden_states.shape[0] != 0:
if residual is None:
hidden_states = self.norm(hidden_states)
else:
hidden_states, _ = self.norm(hidden_states, residual)
if len(aux_hidden_states) == 0:
return hidden_states
return hidden_states, aux_hidden_states
class Qwen3VLForConditionalGeneration(nn.Module):
def __init__(
self,
config: Qwen3VLConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
self.visual = Qwen3_VisionTransformer(
config.vision_config,
norm_eps=getattr(config, "rms_norm_eps", 1e-6),
# NOTE: Qwen3-VL vision encoder currently supports BitsAndBytes 4-bit quantization.
# Other quantization methods (e.g., GPTQ, AWQ) are untested and may not be supported.
quant_config=quant_config,
prefix=add_prefix("visual", prefix),
)
self.model = Qwen3LLMModel(
config=config,
quant_config=quant_config,
prefix=add_prefix("model", prefix),
)
if config.tie_word_embeddings:
self.lm_head = self.model.embed_tokens
else:
self.lm_head = ParallelLMHead(
config.vocab_size,
config.hidden_size,
quant_config=quant_config,
prefix=add_prefix("lm_head", prefix),
)
self.is_mrope_enabled = "mrope_section" in self.config.rope_scaling
self.logits_processor = LogitsProcessor(config)
self.pooler = Pooler(pooling_type=PoolingType.LAST, normalize=True)
# like {8:0, 16:1, 24:2}, which stands for the captured deepstack features on
# 8, 16, 24 layer will be merged to 0, 1, 2 layer of decoder output hidden_states
# deepstack
self.deepstack_visual_indexes = self.visual.deepstack_visual_indexes
self.num_deepstack_embeddings = len(self.deepstack_visual_indexes)
@property
def use_deepstack(self) -> bool:
return hasattr(self, "deepstack_visual_indexes")
def separate_deepstack_embeds(self, embedding):
assert (
embedding.shape[-1] % (1 + self.num_deepstack_embeddings) == 0
), f"hidden_state of {embedding.shape} should be divisible by ({1 + self.num_deepstack_embeddings})"
separate_index = self.config.hidden_size
input_embeds = embedding[:, :separate_index]
input_deepstack_embeds = embedding[:, separate_index:]
return input_embeds, input_deepstack_embeds
def pad_input_ids(self, input_ids: List[int], mm_inputs: MultimodalInputs):
pattern = MultiModalityDataPaddingPatternMultimodalTokens()
return pattern.pad_input_tokens(input_ids, mm_inputs)
def get_image_feature(self, items: List[MultimodalDataItem]) -> torch.Tensor:
# in qwen-vl, last dim is the same
pixel_values = torch.cat([item.feature for item in items], dim=0).type(
self.visual.dtype
)
image_grid_thw = torch.concat([item.image_grid_thw for item in items], dim=0)
assert pixel_values.dim() == 2, pixel_values.dim()
assert image_grid_thw.dim() == 2, image_grid_thw.dim()
image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw)
return image_embeds
def get_video_feature(self, items: List[MultimodalDataItem]) -> torch.Tensor:
# in qwen-vl, last dim is the same
pixel_values = torch.cat([item.feature for item in items], dim=0).type(
self.visual.dtype
)
video_grid_thw = torch.concat([item.video_grid_thw for item in items], dim=0)
assert pixel_values.dim() == 2, pixel_values.dim()
assert video_grid_thw.dim() == 2, video_grid_thw.dim()
video_embeds = self.visual(pixel_values, grid_thw=video_grid_thw)
return video_embeds
def get_input_embeddings(self):
return self.model.embed_tokens
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
forward_batch: ForwardBatch,
get_embedding: bool = False,
):
"""Run forward pass for Qwen3-VL.
Args:
input_ids: Flattened (concatenated) input_ids corresponding to a
batch.
positions: Flattened (concatenated) position ids corresponding to a
batch.
**NOTE**: If mrope is enabled (default setting for Qwen2-VL
opensource models), the shape will be `(3, seq_len)`,
otherwise it will be `(seq_len,).
(Use input_metadata.mrope_positions to replace it)
"""
if self.is_mrope_enabled:
positions = forward_batch.mrope_positions
if not (
forward_batch.forward_mode.is_decode()
or not forward_batch.contains_image_inputs()
):
if self.is_mrope_enabled:
assert positions.ndim == 2 and positions.size(0) == 3, (
"multimodal section rotary embedding requires "
f"(3, seq_len) positions, but got {positions.size()}"
)
hidden_states = general_mm_embed_routine(
input_ids=input_ids,
forward_batch=forward_batch,
language_model=self.model,
multimodal_model=self,
positions=positions,
use_deepstack=self.use_deepstack,
)
if not get_embedding:
return self.logits_processor(
input_ids, hidden_states, self.lm_head, forward_batch
)
else:
return self.pooler(hidden_states, forward_batch)
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
(".qkv_proj", ".q_proj", "q"),
(".qkv_proj", ".k_proj", "k"),
(".qkv_proj", ".v_proj", "v"),
("gate_up_proj", "up_proj", 1),
("gate_up_proj", "gate_proj", 0),
]
params_dict = dict(self.named_parameters(remove_duplicate=False))
for name, loaded_weight in weights:
if "rotary_emb.inv_freq" in name:
continue
if "language_model" in name:
name = name.replace(r"model.language_model.", r"model.")
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name:
continue
if "visual" in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
if "visual" in name:
# adapt to VisionAttention
name = name.replace(r"attn.qkv.", r"attn.qkv_proj.")
name = name.replace(r"model.visual.", r"visual.")
try:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
except KeyError:
print(params_dict.keys())
raise
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader(param, loaded_weight)
EntryClass = Qwen3VLForConditionalGeneration
# Copyright 2025 Qwen Team
# Copyright 2025 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Inference-only Qwen3-VL model compatible with HuggingFace weights."""
import logging
from functools import lru_cache, partial
from typing import Callable, Iterable, List, Literal, Optional, Tuple, TypedDict, Union
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from transformers import BatchFeature
from transformers.activations import ACT2FN
from transformers.models.qwen2_5_vl.modeling_qwen2_5_vl import (
Qwen2_5_VisionRotaryEmbedding,
)
from sglang.srt.configs.qwen3_vl import Qwen3VLMoeConfig, Qwen3VLMoeVisionConfig
from sglang.srt.distributed import (
get_moe_expert_parallel_world_size,
get_pp_group,
get_tensor_model_parallel_rank,
)
from sglang.srt.hf_transformers_utils import get_processor
from sglang.srt.layers.logits_processor import LogitsProcessor
from sglang.srt.layers.moe.fused_moe_triton.layer import FusedMoE
from sglang.srt.layers.pooler import Pooler, PoolingType
from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.layers.utils import get_layer_id
from sglang.srt.layers.vocab_parallel_embedding import ParallelLMHead
from sglang.srt.managers.mm_utils import (
MultiModalityDataPaddingPatternMultimodalTokens,
general_mm_embed_routine,
)
from sglang.srt.managers.schedule_batch import (
MultimodalDataItem,
MultimodalInputs,
global_server_args_dict,
)
from sglang.srt.model_executor.forward_batch_info import ForwardBatch, PPProxyTensors
from sglang.srt.model_loader.weight_utils import default_weight_loader
from sglang.srt.models.qwen3_moe import Qwen3MoeForCausalLM, Qwen3MoeModel
from sglang.srt.models.qwen3_vl import (
Qwen3_VisionTransformer,
Qwen3VLForConditionalGeneration,
)
from sglang.srt.utils import add_prefix
logger = logging.getLogger(__name__)
cached_get_processor = lru_cache(get_processor)
class Qwen3MoeLLMModel(Qwen3MoeModel):
def __init__(
self,
*,
config: Qwen3VLMoeConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__(config=config, quant_config=quant_config, prefix=prefix)
self.hidden_size = config.hidden_size
def get_input_embeddings(self) -> nn.Embedding:
return self.embed_tokens
def get_image_feature(self, items: List[MultimodalDataItem]) -> torch.Tensor:
# in qwen-vl, last dim is the same
pixel_values = torch.cat([item.feature for item in items], dim=0).type(
self.visual.dtype
)
image_grid_thw = torch.concat([item.image_grid_thw for item in items], dim=0)
assert pixel_values.dim() == 2, pixel_values.dim()
assert image_grid_thw.dim() == 2, image_grid_thw.dim()
image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw)
return image_embeds
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
forward_batch: ForwardBatch,
input_embeds: torch.Tensor = None,
pp_proxy_tensors: Optional[PPProxyTensors] = None,
input_deepstack_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, PPProxyTensors]:
if self.pp_group.is_first_rank:
if input_embeds is None:
hidden_states = self.embed_tokens(input_ids)
else:
hidden_states = input_embeds
residual = None
else:
assert pp_proxy_tensors is not None
hidden_states = pp_proxy_tensors["hidden_states"]
residual = pp_proxy_tensors["residual"]
aux_hidden_states = []
for layer_idx, layer in enumerate(
self.layers[self.start_layer : self.end_layer]
):
layer_idx = layer_idx + self.start_layer
if layer_idx in self.layers_to_capture:
aux_hidden_states.append(
hidden_states + residual if residual is not None else hidden_states
)
hidden_states, residual = layer(
positions,
hidden_states,
forward_batch,
residual,
)
# process deepstack
if input_deepstack_embeds is not None and layer_idx in range(3):
sep = self.hidden_size * layer_idx
hidden_states = (
hidden_states
+ input_deepstack_embeds[:, sep : sep + self.hidden_size]
)
if not self.pp_group.is_last_rank:
return PPProxyTensors(
{
"hidden_states": hidden_states,
"residual": residual,
}
)
else:
if hidden_states.shape[0] != 0:
if residual is None:
hidden_states = self.norm(hidden_states)
else:
hidden_states, _ = self.norm(hidden_states, residual)
if len(aux_hidden_states) == 0:
return hidden_states
return hidden_states, aux_hidden_states
class Qwen3VLMoeForConditionalGeneration(Qwen3VLForConditionalGeneration):
def __init__(
self,
*,
config: Qwen3VLMoeConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super(Qwen3VLForConditionalGeneration, self).__init__()
self.config = config
self.visual = Qwen3_VisionTransformer(
config.vision_config,
norm_eps=getattr(config, "rms_norm_eps", 1e-6),
# NOTE: Qwen3-VL vision encoder currently supports BitsAndBytes 4-bit quantization.
# Other quantization methods (e.g., GPTQ, AWQ) are untested and may not be supported.
quant_config=quant_config,
prefix=add_prefix("visual", prefix),
)
self.model = Qwen3MoeLLMModel(
config=config,
quant_config=quant_config,
prefix=add_prefix("model", prefix),
)
if config.tie_word_embeddings:
self.lm_head = self.model.embed_tokens
else:
self.lm_head = ParallelLMHead(
config.vocab_size,
config.hidden_size,
quant_config=quant_config,
prefix=add_prefix("lm_head", prefix),
)
self.is_mrope_enabled = "mrope_section" in self.config.rope_scaling
self.logits_processor = LogitsProcessor(config)
self.pooler = Pooler(pooling_type=PoolingType.LAST, normalize=True)
# deepstack
self.deepstack_visual_indexes = self.visual.deepstack_visual_indexes
self.num_deepstack_embeddings = len(self.deepstack_visual_indexes)
@property
def use_deepstack(self) -> bool:
return hasattr(self, "deepstack_visual_indexes")
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
forward_batch: ForwardBatch,
get_embedding: bool = False,
):
"""Run forward pass for Qwen3-VL.
Args:
input_ids: Flattened (concatenated) input_ids corresponding to a
batch.
positions: Flattened (concatenated) position ids corresponding to a
batch.
**NOTE**: If mrope is enabled (default setting for Qwen2-VL
opensource models), the shape will be `(3, seq_len)`,
otherwise it will be `(seq_len,).
(Use input_metadata.mrope_positions to replace it)
"""
if self.is_mrope_enabled:
positions = forward_batch.mrope_positions
if not (
forward_batch.forward_mode.is_decode()
or not forward_batch.contains_image_inputs()
):
if self.is_mrope_enabled:
assert positions.ndim == 2 and positions.size(0) == 3, (
"multimodal section rotary embedding requires "
f"(3, seq_len) positions, but got {positions.size()}"
)
hidden_states = general_mm_embed_routine(
input_ids=input_ids,
forward_batch=forward_batch,
language_model=self.model,
multimodal_model=self,
positions=positions,
use_deepstack=self.use_deepstack,
)
if not get_embedding:
return self.logits_processor(
input_ids, hidden_states, self.lm_head, forward_batch
)
else:
return self.pooler(hidden_states, forward_batch)
def load_fused_expert_weights(
self,
name: str,
params_dict: dict,
loaded_weight: torch.Tensor,
shard_id: str,
num_experts: int,
):
param = params_dict[name]
# weight_loader = typing.cast(Callable[..., bool], param.weight_loader)
weight_loader = param.weight_loader
ep_rank = get_tensor_model_parallel_rank()
ep_size = get_moe_expert_parallel_world_size()
if ep_size == 1:
for expert_id in range(num_experts):
curr_expert_weight = loaded_weight[expert_id]
weight_loader(
param,
curr_expert_weight,
name,
shard_id,
expert_id,
)
else:
experts_per_ep = num_experts // ep_size
start_expert = ep_rank * experts_per_ep
end_expert = (
(ep_rank + 1) * experts_per_ep
if ep_rank != ep_size - 1
else num_experts
)
for idx, expert_id in enumerate(range(start_expert, end_expert)):
curr_expert_weight = loaded_weight[expert_id]
weight_loader(
param,
curr_expert_weight,
name,
shard_id,
idx,
)
return True
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
(".qkv_proj", ".q_proj", "q"),
(".qkv_proj", ".k_proj", "k"),
(".qkv_proj", ".v_proj", "v"),
("gate_up_proj", "up_proj", 1),
("gate_up_proj", "gate_proj", 0),
]
expert_params_mapping = FusedMoE.make_expert_params_mapping(
ckpt_gate_proj_name="gate_proj",
ckpt_down_proj_name="down_proj",
ckpt_up_proj_name="up_proj",
num_experts=self.config.num_experts,
)
# Skip loading extra parameters for GPTQ/modelopt models.
ignore_suffixes = (
".bias",
"_bias",
".k_scale",
"_k_scale",
".v_scale",
"_v_scale",
".weight_scale",
"_weight_scale",
".input_scale",
"_input_scale",
)
is_fused_expert = False
fused_expert_params_mapping = [
("experts.w13_weight", "experts.gate_up_proj", 0, "w1"),
("experts.w2_weight", "experts.down_proj", 0, "w2"),
]
num_experts = self.config.num_experts
# Cache params_dict to avoid repeated expensive traversal of model parameters
if not hasattr(self, "_cached_params_dict"):
self._cached_params_dict = dict(self.named_parameters())
params_dict = self._cached_params_dict
for name, loaded_weight in weights:
if "language_model" in name:
name = name.replace(r"model.language_model.", r"model.")
for param_name, weight_name, shard_id in stacked_params_mapping:
if "experts.gate_up_proj" in name or "experts.down_proj" in name:
is_fused_expert = True
expert_params_mapping = fused_expert_params_mapping
# Skip non-stacked layers and experts (experts handled below).
if weight_name not in name:
continue
if "visual" in name:
continue
# We have mlp.experts[0].gate_proj in the checkpoint.
# Since we handle the experts below in expert_params_mapping,
# we need to skip here BEFORE we update the name, otherwise
# name will be updated to mlp.experts[0].gate_up_proj, which
# will then be updated below in expert_params_mapping
# for mlp.experts[0].gate_gate_up_proj, which breaks load.
if "mlp.experts" in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra parameters for GPTQ/modelopt models.
if name.endswith(ignore_suffixes) and name not in params_dict:
continue
# [TODO] Skip layers that are on other devices (check if sglang has a similar function)
# if is_pp_missing_parameter(name, self):
# continue
if name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Track if this is an expert weight to enable early skipping
is_expert_weight = False
for mapping in expert_params_mapping:
param_name, weight_name, expert_id, shard_id = mapping
if weight_name not in name:
continue
if "visual" in name:
continue
# Anyway, this is an expert weight and should not be
# attempted to load as other weights later
is_expert_weight = True
name_mapped = name.replace(weight_name, param_name)
if is_fused_expert:
loaded_weight = loaded_weight.transpose(-1, -2) # no bias
if "experts.gate_up_proj" in name:
loaded_weight = loaded_weight.chunk(2, dim=-2)
self.load_fused_expert_weights(
name_mapped,
params_dict,
loaded_weight[0],
"w1",
num_experts,
)
self.load_fused_expert_weights(
name_mapped,
params_dict,
loaded_weight[1],
"w3",
num_experts,
)
else:
self.load_fused_expert_weights(
name_mapped,
params_dict,
loaded_weight,
shard_id,
num_experts,
)
else:
# Skip loading extra parameters for GPTQ/modelopt models.
if (
name_mapped.endswith(ignore_suffixes)
and name_mapped not in params_dict
):
continue
param = params_dict[name_mapped]
# We should ask the weight loader to return success or
# not here since otherwise we may skip experts with
# # other available replicas.
weight_loader = param.weight_loader
weight_loader(
param,
loaded_weight,
name_mapped,
shard_id=shard_id,
expert_id=expert_id,
)
name = name_mapped
break
else:
if is_expert_weight:
# This is an expert weight but not mapped to this rank, skip all remaining processing
continue
if "visual" in name:
# adapt to VisionAttention
name = name.replace(r"attn.qkv.", r"attn.qkv_proj.")
name = name.replace(r"model.visual.", r"visual.")
# Skip loading extra parameters for GPTQ/modelopt models.
if name.endswith(ignore_suffixes) and name not in params_dict:
continue
if name in params_dict.keys():
param = params_dict[name]
weight_loader = getattr(
param, "weight_loader", default_weight_loader
)
weight_loader(param, loaded_weight)
else:
logger.warning(f"Parameter {name} not found in params_dict")
# TODO mimic deepseek
# Lazy initialization of expert weights cache to avoid slowing down load_weights
# if not hasattr(self, "routed_experts_weights_of_layer"):
# self.routed_experts_weights_of_layer = {
# layer_id: self.model.layers[layer_id].mlp.get_moe_weights()
# for layer_id in range(self.start_layer, self.end_layer)
# if isinstance(self.model.layers[layer_id].mlp, Qwen3MoeSparseMoeBlock)
# }
EntryClass = Qwen3VLMoeForConditionalGeneration
......@@ -12,6 +12,8 @@ from torchvision.transforms import InterpolationMode
from sglang.srt.layers.rotary_embedding import MRotaryEmbedding
from sglang.srt.models.qwen2_5_vl import Qwen2_5_VLForConditionalGeneration
from sglang.srt.models.qwen2_vl import Qwen2VLForConditionalGeneration
from sglang.srt.models.qwen3_vl import Qwen3VLForConditionalGeneration
from sglang.srt.models.qwen3_vl_moe import Qwen3VLMoeForConditionalGeneration
from sglang.srt.multimodal.processors.base_processor import (
BaseMultimodalProcessor as SGLangBaseProcessor,
)
......@@ -209,7 +211,12 @@ async def preprocess_video(
# Compatible with Qwen2VL and Qwen2_5VL
class Qwen2_5VLImageProcessor(SGLangBaseProcessor):
models = [Qwen2VLForConditionalGeneration, Qwen2_5_VLForConditionalGeneration]
models = [
Qwen2VLForConditionalGeneration,
Qwen2_5_VLForConditionalGeneration,
Qwen3VLForConditionalGeneration,
Qwen3VLMoeForConditionalGeneration,
]
def __init__(self, hf_config, server_args, _processor, *args, **kwargs):
super().__init__(hf_config, server_args, _processor, *args, **kwargs)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment