Unverified Commit 48efec7b authored by woodx's avatar woodx Committed by GitHub
Browse files

Feature: support code completion (#3612)

parent 9b8333d9
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Completion templates."""
import dataclasses
import json
import logging
import os
from enum import auto
from sglang.srt.openai_api.protocol import ChatCompletionRequest
logger = logging.getLogger(__name__)
completion_template_name = None
class FimPosition:
"""Postion of fim middle token."""
MIDDLE = auto()
END = auto()
@dataclasses.dataclass
class CompletionTemplate:
"""A class that manages completion prompt templates. only for code completion currently."""
# The name of this template
name: str
# the fim begin token
fim_begin_token: str
# The fim middle token
fim_middle_token: str
# The fim end token
fim_end_token: str
# The position of the fim middle token
fim_position: FimPosition
# A global registry for all completion templates
completion_templates: dict[str, CompletionTemplate] = {}
def load_completion_template_for_openai_api(completion_template_arg):
global completion_template_name
logger.info(
f"Use completion template for the OpenAI-compatible API server: {completion_template_arg}"
)
if not completion_template_exists(completion_template_arg):
if not os.path.exists(completion_template_arg):
raise RuntimeError(
f"Completion template {completion_template_arg} is not a built-in template name "
"or a valid completion template file path."
)
assert completion_template_arg.endswith(
".json"
), "unrecognized format of completion template file"
with open(completion_template_arg, "r") as filep:
template = json.load(filep)
try:
fim_position = FimPosition[template["fim_position"]]
except KeyError:
raise ValueError(
f"Unknown fim position: {template['fim_position']}"
) from None
register_completion_template(
CompletionTemplate(
name=template["name"],
fim_begin_token=template["fim_begin_token"],
fim_middle_token=template["fim_middle_token"],
fim_end_token=template["fim_end_token"],
fim_position=fim_position,
),
override=True,
)
completion_template_name = template["name"]
else:
completion_template_name = completion_template_arg
def register_completion_template(template: CompletionTemplate, override: bool = False):
"""Register a new completion template."""
if not override:
assert (
template.name not in completion_templates
), f"{template.name} has been registered."
completion_templates[template.name] = template
def completion_template_exists(template_name: str) -> bool:
return template_name in completion_templates
def is_completion_template_defined() -> bool:
global completion_template_name
return completion_template_name != None
def generate_completion_prompt_from_request(request: ChatCompletionRequest) -> str:
global completion_template_name
if request.suffix == "":
return request.prompt
return generate_completion_prompt(
request.prompt, request.suffix, completion_template_name
)
def generate_completion_prompt(prompt: str, suffix: str, template_name: str) -> str:
completion_template = completion_templates[template_name]
fim_begin_token = completion_template.fim_begin_token
fim_middle_token = completion_template.fim_middle_token
fim_end_token = completion_template.fim_end_token
fim_position = completion_template.fim_position
if fim_position == FimPosition.MIDDLE:
prompt = f"{fim_begin_token}{prompt}{fim_middle_token}{suffix}{fim_end_token}"
elif fim_position == FimPosition.END:
prompt = f"{fim_begin_token}{prompt}{fim_end_token}{suffix}{fim_middle_token}"
return prompt
register_completion_template(
CompletionTemplate(
name="deepseek_coder",
fim_begin_token="<|fim▁begin|>",
fim_middle_token="<|fim▁hole|>",
fim_end_token="<|fim▁end|>",
fim_position=FimPosition.MIDDLE,
)
)
register_completion_template(
CompletionTemplate(
name="star_coder",
fim_begin_token="<fim_prefix>",
fim_middle_token="<fim_middle>",
fim_end_token="<fim_suffix>",
fim_position=FimPosition.END,
)
)
register_completion_template(
CompletionTemplate(
name="qwen_coder",
fim_begin_token="<|fim_prefix|>",
fim_middle_token="<|fim_middle|>",
fim_end_token="<|fim_suffix|>",
fim_position=FimPosition.END,
)
)
...@@ -36,6 +36,7 @@ setattr(threading, "_register_atexit", lambda *args, **kwargs: None) ...@@ -36,6 +36,7 @@ setattr(threading, "_register_atexit", lambda *args, **kwargs: None)
import torch import torch
import uvloop import uvloop
from sglang.srt.code_completion_parser import load_completion_template_for_openai_api
from sglang.srt.managers.data_parallel_controller import ( from sglang.srt.managers.data_parallel_controller import (
run_data_parallel_controller_process, run_data_parallel_controller_process,
) )
...@@ -538,6 +539,9 @@ def _launch_subprocesses( ...@@ -538,6 +539,9 @@ def _launch_subprocesses(
tokenizer_manager, server_args.chat_template, server_args.model_path tokenizer_manager, server_args.chat_template, server_args.model_path
) )
if server_args.completion_template:
load_completion_template_for_openai_api(server_args.completion_template)
# Wait for the model to finish loading # Wait for the model to finish loading
scheduler_infos = [] scheduler_infos = []
for i in range(len(scheduler_pipe_readers)): for i in range(len(scheduler_pipe_readers)):
......
...@@ -33,6 +33,10 @@ except ImportError: ...@@ -33,6 +33,10 @@ except ImportError:
# outlines.integrations.utils # outlines.integrations.utils
from outlines.integrations.utils import convert_json_schema_to_str from outlines.integrations.utils import convert_json_schema_to_str
from sglang.srt.code_completion_parser import (
generate_completion_prompt_from_request,
is_completion_template_defined,
)
from sglang.srt.conversation import ( from sglang.srt.conversation import (
Conversation, Conversation,
SeparatorStyle, SeparatorStyle,
...@@ -504,7 +508,11 @@ def v1_generate_request( ...@@ -504,7 +508,11 @@ def v1_generate_request(
"To compute logprobs of input prompt, please use the native /generate API." "To compute logprobs of input prompt, please use the native /generate API."
) )
prompts.append(request.prompt) prompt = request.prompt
if is_completion_template_defined():
prompt = generate_completion_prompt_from_request(request)
prompts.append(prompt)
lora_paths.append(request.lora_path) lora_paths.append(request.lora_path)
if request.echo and request.logprobs: if request.echo and request.logprobs:
current_logprob_start_len = 0 current_logprob_start_len = 0
......
...@@ -56,6 +56,7 @@ class ServerArgs: ...@@ -56,6 +56,7 @@ class ServerArgs:
device: Optional[str] = None device: Optional[str] = None
served_model_name: Optional[str] = None served_model_name: Optional[str] = None
chat_template: Optional[str] = None chat_template: Optional[str] = None
completion_template: Optional[str] = None
is_embedding: bool = False is_embedding: bool = False
revision: Optional[str] = None revision: Optional[str] = None
...@@ -456,6 +457,12 @@ class ServerArgs: ...@@ -456,6 +457,12 @@ class ServerArgs:
default=ServerArgs.chat_template, default=ServerArgs.chat_template,
help="The buliltin chat template name or the path of the chat template file. This is only used for OpenAI-compatible API server.", help="The buliltin chat template name or the path of the chat template file. This is only used for OpenAI-compatible API server.",
) )
parser.add_argument(
"--completion-template",
type=str,
default=ServerArgs.completion_template,
help="The buliltin completion template name or the path of the completion template file. This is only used for OpenAI-compatible API server. only for code completion currently.",
)
parser.add_argument( parser.add_argument(
"--is-embedding", "--is-embedding",
action="store_true", action="store_true",
......
...@@ -70,6 +70,7 @@ suites = { ...@@ -70,6 +70,7 @@ suites = {
TestFile("test_vision_chunked_prefill.py", 223), TestFile("test_vision_chunked_prefill.py", 223),
TestFile("test_vision_llm.py", 18.4), TestFile("test_vision_llm.py", 18.4),
TestFile("test_vision_openai_server.py", 344), TestFile("test_vision_openai_server.py", 344),
TestFile("test_fim_completion.py", 120),
TestFile("test_w8a8_quantization.py", 46), TestFile("test_w8a8_quantization.py", 46),
TestFile("test_eval_fp8_accuracy.py", 172), TestFile("test_eval_fp8_accuracy.py", 172),
TestFile("test_create_kvindices.py", 2), TestFile("test_create_kvindices.py", 2),
......
import unittest
import openai
from sglang.srt.hf_transformers_utils import get_tokenizer
from sglang.srt.utils import kill_process_tree
from sglang.test.test_utils import (
DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
DEFAULT_URL_FOR_TEST,
popen_launch_server,
)
class TestFimCompletion(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.model = "deepseek-ai/deepseek-coder-1.3b-base"
cls.base_url = DEFAULT_URL_FOR_TEST
cls.api_key = "sk-123456"
other_args = ["--completion-template", "deepseek_coder"]
cls.process = popen_launch_server(
cls.model,
cls.base_url,
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
api_key=cls.api_key,
other_args=other_args,
)
cls.base_url += "/v1"
cls.tokenizer = get_tokenizer(cls.model)
@classmethod
def tearDownClass(cls):
kill_process_tree(cls.process.pid)
def run_fim_completion(self, number_of_completion):
client = openai.Client(api_key=self.api_key, base_url=self.base_url)
prompt = "function sum(a: number, b: number): number{\n"
suffix = "}"
prompt_input = self.tokenizer.encode(prompt) + self.tokenizer.encode(suffix)
num_prompt_tokens = len(prompt_input) + 2
response = client.completions.create(
model=self.model,
prompt=prompt,
suffix=suffix,
temperature=0.3,
max_tokens=32,
stream=False,
n=number_of_completion,
)
print(response)
print(len(response.choices))
assert len(response.choices) == number_of_completion
assert response.id
assert response.created
assert response.object == "text_completion"
assert (
response.usage.prompt_tokens == num_prompt_tokens
), f"{response.usage.prompt_tokens} vs {num_prompt_tokens}"
assert response.usage.completion_tokens > 0
assert response.usage.total_tokens > 0
def test_fim_completion(self):
for number_of_completion in [1, 3]:
self.run_fim_completion(number_of_completion)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment