Unverified Commit 46d8fb1c authored by EduardDurech's avatar EduardDurech Committed by GitHub
Browse files

model: support Apertus (#9774)

parent c7e85f53
...@@ -171,6 +171,115 @@ class QuickGELU(CustomOp): ...@@ -171,6 +171,115 @@ class QuickGELU(CustomOp):
return torch_npu.npu_fast_gelu(x) return torch_npu.npu_fast_gelu(x)
class XIELU(CustomOp):
"""
Applies the xIELU activation function introduced in https://arxiv.org/abs/2411.13010
If the user has installed the nickjbrowning/XIELU, we import xIELU CUDA
Otherwise, we emit a single warning and use xIELU Python
"""
def __init__(
self,
alpha_p_init: float = 0.8,
alpha_n_init: float = 0.8,
beta: float = 0.5,
eps: float = -1e-6,
dtype: torch.dtype = torch.bfloat16,
with_vector_loads: bool = False,
):
super().__init__()
self.alpha_p = nn.Parameter(
torch.log(torch.exp(torch.tensor(alpha_p_init, dtype=dtype)) - 1).unsqueeze(
0
)
)
self.alpha_n = nn.Parameter(
torch.log(
torch.exp(torch.tensor(alpha_n_init - beta, dtype=dtype)) - 1
).unsqueeze(0)
)
self.register_buffer("beta", torch.tensor(beta, dtype=dtype))
self.register_buffer("eps", torch.tensor(eps, dtype=dtype))
self.with_vector_loads = with_vector_loads
# Temporary until xIELU CUDA fully implemented
self._beta_scalar = float(self.beta.detach().cpu().float().item())
self._eps_scalar = float(self.eps.detach().cpu().float().item())
self._xielu_cuda_obj = None
try:
import xielu.ops # noqa: F401
self._xielu_cuda_obj = torch.classes.xielu.XIELU()
msg = "Using experimental xIELU CUDA."
try:
from torch._dynamo import allow_in_graph
self._xielu_cuda_fn = allow_in_graph(self._xielu_cuda)
msg += " Enabled torch._dynamo for xIELU CUDA."
except Exception as err:
msg += (
f" Could not enable torch._dynamo for xIELU ({err}) - "
"this may result in slower performance."
)
self._xielu_cuda_fn = self._xielu_cuda
logger.warning_once(msg)
except Exception as err:
logger.warning_once(
"CUDA-fused xIELU not available (%s) –"
" falling back to a Python version.\n"
"For CUDA xIELU (experimental), `pip install git+https://github.com/nickjbrowning/XIELU`",
str(err),
)
def _xielu_python(self, x: torch.Tensor) -> torch.Tensor:
alpha_p = nn.functional.softplus(self.alpha_p)
alpha_n = self.beta + nn.functional.softplus(self.alpha_n)
return torch.where(
x > 0,
alpha_p * x * x + self.beta * x,
(torch.expm1(torch.min(x, self.eps)) - x) * alpha_n + self.beta * x,
)
def _xielu_cuda(self, x: torch.Tensor) -> torch.Tensor:
"""Firewall function to prevent torch.compile from seeing .item()"""
assert self._xielu_cuda_obj is not None, "XIELU CUDA object must not be None"
original_shape = x.shape
# CUDA kernel expects 3D tensors, reshape if needed
while x.dim() < 3:
x = x.unsqueeze(0)
if x.dim() > 3:
x = x.view(-1, 1, x.size(-1))
if original_shape != x.shape:
logger.warning_once(
"Warning: xIELU input tensor expects 3 dimensions"
" but got (shape: %s). Reshaping to (shape: %s).\n"
"Note: For SGLang this may be expected if sending"
"[B*S,D] instead of [B,S,D].",
original_shape,
x.shape,
)
result = self._xielu_cuda_obj.forward(
x,
self.alpha_p,
self.alpha_n,
# Temporary until xIELU CUDA fully implemented -> self.{beta,eps}.item()
self._beta_scalar,
self._eps_scalar,
self.with_vector_loads,
)
return result.view(original_shape)
def forward(self, input: torch.Tensor) -> torch.Tensor:
if self._xielu_cuda_obj is not None and input.is_cuda:
if not torch._dynamo.is_compiling():
return self._xielu_cuda_fn(input)
else:
logger.warning_once(
"torch._dynamo is compiling, using Python version of xIELU."
)
return self._xielu_python(input)
class ScaledActivation(nn.Module): class ScaledActivation(nn.Module):
"""An activation function with post-scale parameters. """An activation function with post-scale parameters.
...@@ -218,6 +327,7 @@ _ACTIVATION_REGISTRY = { ...@@ -218,6 +327,7 @@ _ACTIVATION_REGISTRY = {
"gelu_pytorch_tanh": nn.GELU(approximate="tanh"), "gelu_pytorch_tanh": nn.GELU(approximate="tanh"),
"gelu_new": NewGELU(), "gelu_new": NewGELU(),
"relu2": ReLU2(), "relu2": ReLU2(),
"xielu": XIELU(),
} }
......
# Copyright 2025 The SwissAI Initiative
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# Adapted from
# https://github.com/vllm-project/vllm/blob/c7f2cf2b7f67bce5842fedfdba508440fe257375/vllm/model_executor/models/llama.py#L1
"""Inference-only Apertus model compatible with HuggingFace weights."""
import logging
from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
import torch
from torch import nn
from transformers import ApertusConfig
from sglang.srt.distributed import (
get_pp_group,
get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size,
)
from sglang.srt.layers.activation import XIELU
from sglang.srt.layers.layernorm import RMSNorm
from sglang.srt.layers.linear import (
ColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear,
)
from sglang.srt.layers.logits_processor import LogitsProcessor, LogitsProcessorOutput
from sglang.srt.layers.pooler import Pooler, PoolingType
from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.layers.rotary_embedding import get_rope
from sglang.srt.layers.utils import PPMissingLayer, get_layer_id
from sglang.srt.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from sglang.srt.managers.schedule_batch import global_server_args_dict
from sglang.srt.model_executor.forward_batch_info import ForwardBatch, PPProxyTensors
from sglang.srt.model_loader.weight_utils import (
default_weight_loader,
kv_cache_scales_loader,
maybe_remap_kv_scale_name,
)
from sglang.srt.utils import add_prefix, make_layers
from sglang.utils import get_exception_traceback
logger = logging.getLogger(__name__)
class ApertusMLP(nn.Module):
def __init__(
self,
hidden_size: int,
intermediate_size: int,
hidden_act: str,
quant_config: Optional[QuantizationConfig] = None,
bias: bool = False,
prefix: str = "",
reduce_results: bool = True,
) -> None:
super().__init__()
self.up_proj = ColumnParallelLinear(
hidden_size,
intermediate_size,
bias=bias,
quant_config=quant_config,
prefix=add_prefix("up_proj", prefix),
)
self.down_proj = RowParallelLinear(
intermediate_size,
hidden_size,
bias=bias,
quant_config=quant_config,
prefix=add_prefix("down_proj", prefix),
reduce_results=reduce_results,
)
if hidden_act != "xielu":
raise ValueError(
f"Unsupported activation: {hidden_act}. "
"Only xIELU is supported for now."
)
self.act_fn = XIELU()
def forward(
self,
x,
forward_batch=None,
use_reduce_scatter: bool = False,
):
# note: with xielu, there's no gate_proj
x, _ = self.up_proj(x)
x = self.act_fn(x)
x, _ = self.down_proj(
x,
skip_all_reduce=use_reduce_scatter,
)
return x
class ApertusAttention(nn.Module):
def __init__(
self,
config: ApertusConfig,
hidden_size: int,
num_heads: int,
num_kv_heads: int,
layer_id: int = 0,
rope_theta: float = 10000,
rope_scaling: Optional[Dict[str, Any]] = None,
rope_is_neox_style: bool = True,
max_position_embeddings: int = 8192,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
bias: bool = False,
bias_o_proj: bool = False,
) -> None:
super().__init__()
self.layer_id = layer_id
self.hidden_size = hidden_size
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = num_heads
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
self.total_num_kv_heads = num_kv_heads
if self.total_num_kv_heads >= tp_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % tp_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
# MistralConfig has an optional head_dim introduced by Mistral-Nemo
self.head_dim = getattr(
config, "head_dim", self.hidden_size // self.total_num_heads
)
partial_rotary_factor = getattr(config, "partial_rotary_factor", 1)
self.rotary_dim = int(partial_rotary_factor * self.head_dim)
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.rope_theta = rope_theta
self.max_position_embeddings = max_position_embeddings
self.qkv_proj = QKVParallelLinear(
hidden_size,
self.head_dim,
self.total_num_heads,
self.total_num_kv_heads,
bias=bias,
quant_config=quant_config,
prefix=add_prefix("qkv_proj", prefix),
)
self.o_proj = RowParallelLinear(
self.total_num_heads * self.head_dim,
hidden_size,
bias=bias_o_proj,
quant_config=quant_config,
prefix=add_prefix("o_proj", prefix),
)
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.rotary_dim,
max_position=max_position_embeddings,
base=rope_theta,
rope_scaling=rope_scaling,
is_neox_style=rope_is_neox_style,
)
self.attn = RadixAttention(
self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
layer_id=layer_id,
quant_config=quant_config,
prefix=add_prefix("attn", prefix),
)
self.q_norm = RMSNorm(self.head_dim, eps=config.rms_norm_eps)
self.k_norm = RMSNorm(self.head_dim, eps=config.rms_norm_eps)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
forward_batch: ForwardBatch,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q = self.q_norm(q.contiguous().view(-1, self.head_dim)).view_as(q)
k = self.k_norm(k.contiguous().view(-1, self.head_dim)).view_as(k)
q, k = self.rotary_emb(positions, q, k)
attn_output = self.attn(q, k, v, forward_batch)
output, _ = self.o_proj(attn_output)
return output
class ApertusDecoderLayer(nn.Module):
def __init__(
self,
config: ApertusConfig,
layer_id: int = 0,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
rope_theta = getattr(config, "rope_theta", 10000)
rope_scaling = getattr(config, "rope_scaling", None)
if rope_scaling is not None and getattr(
config, "original_max_position_embeddings", None
):
rope_scaling["original_max_position_embeddings"] = (
config.original_max_position_embeddings
)
rope_is_neox_style = getattr(config, "rope_is_neox_style", True)
max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
# Support llamafy/Qwen-Qwen2.5-7B-Instruct-llamafied with attention_bias
# Support internlm/internlm-7b with bias
attention_bias = getattr(config, "attention_bias", False) or getattr(
config, "bias", False
)
bias_o_proj = attention_bias
# support internlm/internlm3-8b with qkv_bias
if hasattr(config, "qkv_bias"):
attention_bias = config.qkv_bias
self.self_attn = ApertusAttention(
config=config,
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
num_kv_heads=config.num_key_value_heads,
layer_id=layer_id,
rope_theta=rope_theta,
rope_scaling=rope_scaling,
rope_is_neox_style=rope_is_neox_style,
max_position_embeddings=max_position_embeddings,
quant_config=quant_config,
prefix=add_prefix("self_attn", prefix),
bias=attention_bias,
bias_o_proj=bias_o_proj,
)
self.mlp = ApertusMLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
quant_config=quant_config,
bias=getattr(config, "mlp_bias", False),
prefix=add_prefix("mlp", prefix),
)
self.attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.feedforward_layernorm = RMSNorm(
config.hidden_size, eps=config.rms_norm_eps
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
forward_batch: ForwardBatch,
residual: Optional[torch.Tensor],
) -> Tuple[torch.Tensor, torch.Tensor]:
# Self Attention
if residual is None:
residual = hidden_states
hidden_states = self.attention_layernorm(hidden_states)
else:
hidden_states, residual = self.attention_layernorm(hidden_states, residual)
hidden_states = self.self_attn(
positions=positions,
hidden_states=hidden_states,
forward_batch=forward_batch,
)
# Fully Connected
hidden_states, residual = self.feedforward_layernorm(hidden_states, residual)
hidden_states = self.mlp(hidden_states)
return hidden_states, residual
class ApertusModel(nn.Module):
def __init__(
self,
config: ApertusConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.quant_config = quant_config
self.config = config
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.org_vocab_size = config.vocab_size
self.pp_group = get_pp_group()
if self.pp_group.is_first_rank:
self.embed_tokens = VocabParallelEmbedding(
config.vocab_size,
config.hidden_size,
quant_config=quant_config,
prefix=add_prefix("embed_tokens", prefix),
)
else:
self.embed_tokens = PPMissingLayer()
self.layers, self.start_layer, self.end_layer = make_layers(
config.num_hidden_layers,
lambda idx, prefix: ApertusDecoderLayer(
config=config, quant_config=quant_config, layer_id=idx, prefix=prefix
),
pp_rank=self.pp_group.rank_in_group,
pp_size=self.pp_group.world_size,
prefix="model.layers",
)
if self.pp_group.is_last_rank:
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
else:
self.norm = PPMissingLayer(return_tuple=True)
self.layers_to_capture = []
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
forward_batch: ForwardBatch,
input_embeds: torch.Tensor = None,
pp_proxy_tensors: Optional[PPProxyTensors] = None,
) -> Union[torch.Tensor, Tuple[torch.Tensor, List[torch.Tensor]], PPProxyTensors]:
if self.pp_group.is_first_rank:
if input_embeds is None:
hidden_states = self.embed_tokens(input_ids)
else:
hidden_states = input_embeds
residual = None
else:
assert pp_proxy_tensors is not None
# FIXME(@ying): reduce the number of proxy tensors by not fusing layer norms
hidden_states = pp_proxy_tensors["hidden_states"]
residual = pp_proxy_tensors["residual"]
deferred_norm = None
aux_hidden_states = []
for i in range(self.start_layer, self.end_layer):
if i in self.layers_to_capture:
aux_hidden_states.append(hidden_states + residual)
layer = self.layers[i]
hidden_states, residual = layer(
positions,
hidden_states,
forward_batch,
residual,
)
if not self.pp_group.is_last_rank:
return PPProxyTensors(
{
"hidden_states": hidden_states,
"residual": residual,
}
)
else:
hidden_states, _ = self.norm(hidden_states, residual)
if len(aux_hidden_states) == 0:
return hidden_states
return hidden_states, aux_hidden_states
# If this function is called, it should always initialize KV cache scale
# factors (or else raise an exception). Thus, handled exceptions should
# make sure to leave KV cache scale factors in a known good (dummy) state
def load_kv_cache_scales(self, quantization_param_path: str) -> None:
tp_size = get_tensor_model_parallel_world_size()
tp_rank = get_tensor_model_parallel_rank()
for layer_idx, scaling_factor in kv_cache_scales_loader(
quantization_param_path,
tp_rank,
tp_size,
self.config.num_hidden_layers,
self.config.__class__.model_type,
):
if not isinstance(self.layers[layer_idx], nn.Identity):
layer_self_attn = self.layers[layer_idx].self_attn
if hasattr(layer_self_attn.attn, "k_scale"):
layer_self_attn.attn.k_scale = scaling_factor
layer_self_attn.attn.v_scale = scaling_factor
else:
raise RuntimeError(
"Self attention has no KV cache scaling " "factor attribute!"
)
class ApertusForCausalLM(nn.Module):
# LoRA specific attributes
embedding_modules = {
"embed_tokens": "input_embeddings",
"lm_head": "output_embeddings",
}
embedding_padding_modules = ["lm_head"]
# BitandBytes specific attributes
default_bitsandbytes_target_modules = [
".down_proj.",
".up_proj.",
".q_proj.",
".k_proj.",
".v_proj.",
".o_proj.",
]
# in TP, these weights are partitioned along the column dimension (dim=-1)
column_parallel_weights_modules = [".down_proj.", ".o_proj."]
bitsandbytes_stacked_params_mapping = {
# shard_name, weight_name, index
".q_proj": (".qkv_proj", 0),
".k_proj": (".qkv_proj", 1),
".v_proj": (".qkv_proj", 2),
}
def __init__(
self,
config: ApertusConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.pp_group = get_pp_group()
self.config = config
self.quant_config = quant_config
self.model = self._init_model(config, quant_config, add_prefix("model", prefix))
if self.config.tie_word_embeddings:
self.lm_head = self.model.embed_tokens
else:
self.lm_head = ParallelLMHead(
config.vocab_size,
config.hidden_size,
quant_config=quant_config,
prefix=add_prefix("lm_head", prefix),
use_attn_tp_group=global_server_args_dict["enable_dp_lm_head"],
)
self.logits_processor = LogitsProcessor(config)
self.pooler = Pooler(pooling_type=PoolingType.LAST, normalize=True)
self.stacked_params_mapping = [
# (param_name, shard_name, shard_id)
(".qkv_proj", ".q_proj", "q"),
(".qkv_proj", ".k_proj", "k"),
(".qkv_proj", ".v_proj", "v"),
]
self.capture_aux_hidden_states = False
def _init_model(
self,
config: ApertusConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
return ApertusModel(config, quant_config=quant_config, prefix=prefix)
@torch.no_grad()
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
forward_batch: ForwardBatch,
input_embeds: torch.Tensor = None,
get_embedding: bool = False,
pp_proxy_tensors: Optional[PPProxyTensors] = None,
) -> LogitsProcessorOutput:
hidden_states = self.model(
input_ids,
positions,
forward_batch,
input_embeds,
pp_proxy_tensors=pp_proxy_tensors,
)
aux_hidden_states = None
if self.capture_aux_hidden_states:
hidden_states, aux_hidden_states = hidden_states
if self.pp_group.is_last_rank:
if not get_embedding:
return self.logits_processor(
input_ids,
hidden_states,
self.lm_head,
forward_batch,
aux_hidden_states,
)
else:
return self.pooler(hidden_states, forward_batch)
else:
return hidden_states
@torch.no_grad()
def forward_split_prefill(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
forward_batch: ForwardBatch,
split_interval: Tuple[int, int], # [start, end) 0-based
input_embeds: torch.Tensor = None,
) -> Optional[LogitsProcessorOutput]:
start, end = split_interval
# embed
if start == 0:
if input_embeds is None:
forward_batch.hidden_states = self.model.embed_tokens(input_ids)
else:
forward_batch.hidden_states = input_embeds
# decoder layer
for i in range(start, end):
layer = self.model.layers[i]
forward_batch.hidden_states, forward_batch.residual = layer(
positions,
forward_batch.hidden_states,
forward_batch,
forward_batch.residual,
)
if end == self.model.config.num_hidden_layers:
# norm
hidden_states, _ = self.model.norm(
forward_batch.hidden_states, forward_batch.residual
)
forward_batch.hidden_states = hidden_states
# logits process
result = self.logits_processor(
input_ids, forward_batch.hidden_states, self.lm_head, forward_batch
)
else:
result = None
return result
@property
def start_layer(self):
return self.model.start_layer
@property
def end_layer(self):
return self.model.end_layer
def get_input_embeddings(self) -> nn.Embedding:
return self.model.embed_tokens
def get_module_name_from_weight_name(self, name):
for param_name, weight_name, shard_id, num_shard in self.stacked_params_mapping:
if weight_name in name:
return (
name.replace(weight_name, param_name)[: -len(".weight")],
num_shard,
)
return name[: -len(".weight")], 1
def get_num_params(self):
params_dict = dict(self.named_parameters())
return len(params_dict)
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
(".qkv_proj", ".q_proj", "q"),
(".qkv_proj", ".k_proj", "k"),
(".qkv_proj", ".v_proj", "v"),
]
params_dict = dict(self.named_parameters())
for name, buffer in self.named_buffers():
if name.endswith(".beta") or name.endswith(".eps"):
params_dict[name] = buffer
for name, loaded_weight in weights:
layer_id = get_layer_id(name)
if (
layer_id is not None
and hasattr(self.model, "start_layer")
and (
layer_id < self.model.start_layer
or layer_id >= self.model.end_layer
)
):
continue
if "rotary_emb.inv_freq" in name or "projector" in name:
continue
if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name:
# Models trained using ColossalAI may include these tensors in
# the checkpoint. Skip them.
continue
if name.startswith("model.vision_tower") and name not in params_dict:
continue
if self.config.tie_word_embeddings and "lm_head.weight" in name:
continue
# Handle FP8 kv-scale remapping
if "scale" in name:
name = maybe_remap_kv_scale_name(name, params_dict)
if name is None:
continue
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
if name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
# Skip loading kv_scale from ckpts towards new design.
if name.endswith(".kv_scale") and name not in params_dict:
continue
if name in params_dict.keys():
param = params_dict[name]
weight_loader = getattr(
param, "weight_loader", default_weight_loader
)
weight_loader(param, loaded_weight)
else:
logger.warning(f"Parameter {name} not found in params_dict")
def get_embed_and_head(self):
return self.model.embed_tokens.weight, self.lm_head.weight
def set_embed_and_head(self, embed, head):
del self.model.embed_tokens.weight
del self.lm_head.weight
self.model.embed_tokens.weight = embed
self.lm_head.weight = head
torch.cuda.empty_cache()
torch.cuda.synchronize()
def get_embed(self):
return self.model.embed_tokens.weight
def set_embed(self, embed):
# NOTE: If draft hidden size != target hidden size, the embed weight cannot be shared for EAGLE3
if (
hasattr(self.config, "target_hidden_size")
and self.config.target_hidden_size != self.config.hidden_size
):
return
del self.model.embed_tokens.weight
self.model.embed_tokens.weight = embed
torch.cuda.empty_cache()
torch.cuda.synchronize()
def load_kv_cache_scales(self, quantization_param_path: str) -> None:
self.model.load_kv_cache_scales(quantization_param_path)
def set_eagle3_layers_to_capture(self, layer_ids: Optional[List[int]] = None):
if not self.pp_group.is_last_rank:
return
if layer_ids is None:
self.capture_aux_hidden_states = True
num_layers = self.config.num_hidden_layers
self.model.layers_to_capture = [2, num_layers // 2, num_layers - 3]
else:
self.capture_aux_hidden_states = True
# we plus 1 here because in sglang, for the ith layer, it takes the output
# of the (i-1)th layer as aux hidden state
self.model.layers_to_capture = [val + 1 for val in layer_ids]
EntryClass = [ApertusForCausalLM]
...@@ -90,6 +90,11 @@ ALL_MODELS = [ ...@@ -90,6 +90,11 @@ ALL_MODELS = [
trust_remote_code=True, trust_remote_code=True,
skip_long_prompt=True, skip_long_prompt=True,
), ),
ModelCase(
"swiss-ai/Apertus-8B",
trust_remote_code=True,
skip_long_prompt=True,
),
] ]
TORCH_DTYPES = [torch.float16] TORCH_DTYPES = [torch.float16]
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment