Unverified Commit 3602692c authored by Yineng Zhang's avatar Yineng Zhang Committed by GitHub
Browse files

feat: replace get_act_fn for gpt_bigcode (#1231)

parent 909f3436
...@@ -13,10 +13,20 @@ limitations under the License. ...@@ -13,10 +13,20 @@ limitations under the License.
"""Fused operators for activation layers.""" """Fused operators for activation layers."""
from typing import Optional
import torch import torch
import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
from flashinfer.activation import gelu_tanh_and_mul, silu_and_mul from flashinfer.activation import gelu_tanh_and_mul, silu_and_mul
from vllm.distributed import (
divide,
get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size,
)
from vllm.model_executor.custom_op import CustomOp from vllm.model_executor.custom_op import CustomOp
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.utils import set_weight_attrs
class SiluAndMul(CustomOp): class SiluAndMul(CustomOp):
...@@ -53,3 +63,76 @@ class GeluAndMul(CustomOp): ...@@ -53,3 +63,76 @@ class GeluAndMul(CustomOp):
out = torch.empty(output_shape, dtype=x.dtype, device=x.device) out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
gelu_tanh_and_mul(x, out) gelu_tanh_and_mul(x, out)
return out return out
class ScaledActivation(nn.Module):
"""An activation function with post-scale parameters.
This is used for some quantization methods like AWQ.
"""
def __init__(
self,
act_module: nn.Module,
intermediate_size: int,
input_is_parallel: bool = True,
params_dtype: Optional[torch.dtype] = None,
):
super().__init__()
self.act = act_module
self.input_is_parallel = input_is_parallel
if input_is_parallel:
tp_size = get_tensor_model_parallel_world_size()
intermediate_size_per_partition = divide(intermediate_size, tp_size)
else:
intermediate_size_per_partition = intermediate_size
if params_dtype is None:
params_dtype = torch.get_default_dtype()
self.scales = nn.Parameter(
torch.empty(intermediate_size_per_partition, dtype=params_dtype)
)
set_weight_attrs(self.scales, {"weight_loader": self.weight_loader})
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.act(x) / self.scales
def weight_loader(self, param: nn.Parameter, loaded_weight: torch.Tensor):
param_data = param.data
if self.input_is_parallel:
tp_rank = get_tensor_model_parallel_rank()
shard_size = param_data.shape[0]
start_idx = tp_rank * shard_size
loaded_weight = loaded_weight.narrow(0, start_idx, shard_size)
assert param_data.shape == loaded_weight.shape
param_data.copy_(loaded_weight)
_ACTIVATION_REGISTRY = {
"gelu": nn.GELU(),
"gelu_pytorch_tanh": nn.GELU(approximate="tanh"),
}
def get_act_fn(
act_fn_name: str,
quant_config: Optional[QuantizationConfig] = None,
intermediate_size: Optional[int] = None,
input_is_parallel: bool = True,
params_dtype: Optional[torch.dtype] = None,
) -> nn.Module:
"""Get an activation function by name."""
act_fn_name = act_fn_name.lower()
if act_fn_name not in _ACTIVATION_REGISTRY:
raise ValueError(f"Activation function {act_fn_name!r} is not supported.")
act_fn = _ACTIVATION_REGISTRY[act_fn_name]
if quant_config is not None and act_fn_name in quant_config.get_scaled_act_names():
if intermediate_size is None:
raise ValueError(
"intermediate_size must be specified for scaled "
"activation functions."
)
return ScaledActivation(
act_fn, intermediate_size, input_is_parallel, params_dtype
)
return act_fn
...@@ -23,7 +23,6 @@ from torch import nn ...@@ -23,7 +23,6 @@ from torch import nn
from transformers import GPTBigCodeConfig from transformers import GPTBigCodeConfig
from vllm.config import CacheConfig, LoRAConfig from vllm.config import CacheConfig, LoRAConfig
from vllm.distributed import get_tensor_model_parallel_world_size from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.model_executor.layers.activation import get_act_fn
from vllm.model_executor.layers.linear import ( from vllm.model_executor.layers.linear import (
ColumnParallelLinear, ColumnParallelLinear,
QKVParallelLinear, QKVParallelLinear,
...@@ -33,6 +32,7 @@ from vllm.model_executor.layers.quantization.base_config import QuantizationConf ...@@ -33,6 +32,7 @@ from vllm.model_executor.layers.quantization.base_config import QuantizationConf
from vllm.model_executor.layers.vocab_parallel_embedding import VocabParallelEmbedding from vllm.model_executor.layers.vocab_parallel_embedding import VocabParallelEmbedding
from vllm.model_executor.model_loader.weight_utils import default_weight_loader from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from sglang.srt.layers.activation import get_act_fn
from sglang.srt.layers.logits_processor import LogitsProcessor from sglang.srt.layers.logits_processor import LogitsProcessor
from sglang.srt.layers.radix_attention import RadixAttention from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.layers.sampler import Sampler from sglang.srt.layers.sampler import Sampler
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment