Unverified Commit 2ce87935 authored by applesaucethebun's avatar applesaucethebun Committed by GitHub
Browse files

Add typo checker in pre-commit (#6179)


Co-authored-by: default avatarBrayden Zhong <b8zhong@uwaterloo.ca>
parent de167cf5
......@@ -20,7 +20,7 @@ def _per_token_group_quant_8bit(
y_s_ptr,
# Stride of input
y_stride,
# Collums of input
# Columns of input
N,
# Avoid to divide zero
eps,
......
......@@ -49,7 +49,7 @@ namespace {
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
#define CHECK_LAST_DIM_CONTIGUOUS(x) \
TORCH_CHECK(x.strides()[x.strides().size() - 1] == 1, #x "must be contiguous at last dimention")
TORCH_CHECK(x.strides()[x.strides().size() - 1] == 1, #x "must be contiguous at last dimension")
#define CHECK_INPUT(x) \
CHECK_CPU(x); \
......
......@@ -718,7 +718,7 @@ void decode_attention_kernel_impl(
m_prime = m_i;
// caculate V' <- s_delta @ V + V' * m_delta
// calculate V' <- s_delta @ V + V' * m_delta
index_gemm_kernel_nn<scalar_t, index_t>(
/* A */ s_delta,
/* B */ v_buffer + head_id * v_strideH,
......@@ -925,7 +925,7 @@ void decode_attention_grouped_kernel_impl(
m_prime[h] = m_i;
}
// caculate V' <- s_delta @ V + V' * m_delta
// calculate V' <- s_delta @ V + V' * m_delta
index_gemm_kernel_nn<scalar_t, index_t>(
/* A */ s_delta,
/* B */ v_buffer + head_kv_id * v_strideH,
......
......@@ -323,7 +323,7 @@ void extend_attention_kernel_impl(
/* ld_src */ v_strideN,
/* ld_dst */ head_size_v);
// caculate V' <- s_delta @ V + V'
// calculate V' <- s_delta @ V + V'
at::native::cpublas::brgemm(
/* M */ m_size,
/* N */ head_size_v,
......@@ -434,7 +434,7 @@ void extend_attention_kernel_impl(
/* ld_src */ ve_strideN,
/* ld_dst */ head_size_v);
// caculate V' <- s_delta @ V + V'
// calculate V' <- s_delta @ V + V'
at::native::cpublas::brgemm(
/* M */ m_size,
/* N */ head_size_v,
......
......@@ -79,7 +79,7 @@ void fused_experts_int8_kernel_impl(
int64_t topk,
int64_t num_tokens_post_pad);
// shared expert implememntation for int8 w8a8
// shared expert implementation for int8 w8a8
template <typename scalar_t>
void shared_expert_int8_kernel_impl(
scalar_t* __restrict__ output,
......
......@@ -51,7 +51,7 @@ struct tinygemm_kernel_nn<at::BFloat16, has_bias, BLOCK_M, BLOCK_N> {
__m512 vd0;
__m512 vd1[COLS];
// oops! 4x4 spills but luckly we use 4x2
// oops! 4x4 spills but we use 4x2
__m512 vbias[COLS];
// [NOTE]: s8s8 igemm compensation in avx512-vnni
......
// This is only a pluggin used for flashinfer 0.1.6. The new version does not need it.
// This is only a plugin used for flashinfer 0.1.6. The new version does not need it.
/*
* Copyright (c) 2025 by SGLang team.
* Copyright (c) 2025 by FlashInfer team.
......
......@@ -20,16 +20,16 @@ limitations under the License.
#include <torch/library.h>
/**
* Unforunately, the type signatures of the flash_attn ops are not compatible
* Unfortunately, the type signatures of the flash_attn ops are not compatible
* with the PyTorch library bindings. To get around that we use
* `make_pytorch_shim` which creates a lambda that exponses the API using
* `make_pytorch_shim` which creates a lambda that exposes the API using
* PyTorch compatible types to the types, then converts them to the types
* expected by the flash_attn ops. This shims allows us to make minimal changes
* to `flash_api.cpp` making it easier to synchronize with upstream changes.
*
* The `pytorch_library_compatible_type` struct is used to map from the
* flash_attn ops types to a PyTorch library compatible one. The main issues is
* that the following types are not support by PyTorch libary bindings:
* that the following types are not support by PyTorch library bindings:
* - `int`
* - `float`
* - `std::optional<T> &`
......
......@@ -229,7 +229,7 @@ def apply_rope_with_cos_sin_cache_inplace(
Whether to use Neox style RoPE, default: ``True``.
* If ``True``, the last dimension of the query/key tensor is not interleaved, i.e.,
we rorate the first half dimensions ``([..., :head_dim//2])`` and the second half
we rotate the first half dimensions ``([..., :head_dim//2])`` and the second half
dimensions ``([..., head_dim//2:])``.
* If ``False``, the last dimension of the query/key tensor is interleaved, i.e.,
......
......@@ -17,7 +17,7 @@ def is_fa3_supported(device=None) -> bool:
# Between sm80/sm87 and sm86/sm89 is the shared memory size. you can follow the link below for more information
# https://docs.nvidia.com/cuda/cuda-c-programming-guide/#shared-memory-8-x
# And for sgl-kernel right now, we can build fa3 on sm80/sm86/sm89/sm90a.
# Thats mean if you use A100/A*0/L20/L40/L40s/4090 you can use fa3.
# That means if you use A100/A*0/L20/L40/L40s/4090 you can use fa3.
return (
torch.cuda.get_device_capability(device)[0] == 9
or torch.cuda.get_device_capability(device)[0] == 8
......
......@@ -45,10 +45,10 @@ def moe_fused_gate(
):
# This fused kernel function is used to select topk expert in a hierarchical 2-layer fashion
# it split group of expert into num_expert_group, and use top2 expert weight sum in each group
# as the group weight to select exerpt groups and then select topk experts within the selected groups
# as the group weight to select expert groups and then select topk experts within the selected groups
# the #experts is decided by the input tensor shape and we currently only support power of 2 #experts
# and #experts should be divisible by num_expert_group. #expert/num_expert_group <= 32 is limitted for now.
# for non-supported case, we suggestion to use the biased_grouped_topk func in sglang.srt.layers.moe.topk
# and #experts should be divisible by num_expert_group. #expert/num_expert_group <= 32 is limited for now.
# for non-supported case, we suggest to use the biased_grouped_topk func in sglang.srt.layers.moe.topk
# n_share_experts_fusion: if > 0, the last expert will be replaced with a round-robin shared expert
# routed_scaling_factor: if > 0, the last expert will be scaled by this factor
return torch.ops.sgl_kernel.moe_fused_gate.default(
......
......@@ -24,7 +24,7 @@ def is_fa3_supported(device=None) -> bool:
# Between sm80/sm87 and sm86/sm89 is the shared memory size. you can follow the link below for more information
# https://docs.nvidia.com/cuda/cuda-c-programming-guide/#shared-memory-8-x
# And for sgl-kernel right now, we can build fa3 on sm80/sm86/sm89/sm90a.
# Thats mean if you use A100/A*0/L20/L40/L40s/4090 you can use fa3.
# That means if you use A100/A*0/L20/L40/L40s/4090 you can use fa3.
return (
torch.cuda.get_device_capability(device)[0] == 9
or torch.cuda.get_device_capability(device)[0] == 8
......
......@@ -21,7 +21,7 @@ def _per_token_group_quant_fp8(
y_s_ptr,
# Stride of input
y_stride,
# Collums of input
# Columns of input
N,
# Avoid to divide zero
eps,
......
......@@ -1070,7 +1070,7 @@ mod tests {
#[test]
fn test_utf8_split_seq() {
// The string should be indexed and splitted by a utf-8 value basis instead of byte basis
// The string should be indexed and split by a utf-8 value basis instead of byte basis
// use .chars() to get the iterator of the utf-8 value
let tree = Arc::new(Tree::new());
......
......@@ -433,7 +433,7 @@ class TestOpenAIServer(CustomTestCase):
)
def test_completion_stream(self):
# parallel sampling adn list input are not supported in streaming mode
# parallel sampling and list input are not supported in streaming mode
for echo in [False, True]:
for logprobs in [None, 5]:
for use_list_input in [True, False]:
......
......@@ -161,7 +161,7 @@ class TestSessionControl(CustomTestCase):
]
)
# query with a non-existing rid (the last one should be disappeared becuase of backtrack), should see abort
# query with a non-existing rid (the last one should be disappeared because of backtrack), should see abort
response = requests.post(
self.base_url + "/generate",
json={
......@@ -668,7 +668,7 @@ class TestSessionControlVision(CustomTestCase):
).json()
outputs_from_session.append(response["text"])
# query with a non-existing rid (the last one should be disappeared becuase of backtrack), should see abort
# query with a non-existing rid (the last one should be disappeared because of backtrack), should see abort
response = requests.post(
self.base_url + "/generate",
json={
......
......@@ -295,7 +295,7 @@ class TestSRTEndpoint(CustomTestCase):
print(f"{output_top_logprobs=}")
# Parse results
# This is becaues the grammar constraint allows all prefix tokens
# This is because the grammar constraint allows all prefix tokens
logprobs = [None] * 2
for i in range(len(output_top_logprobs)):
try:
......
......@@ -8,7 +8,7 @@ class TestSRTEngineWithQuantArgs(CustomTestCase):
def test_1_quantization_args(self):
# we only test fp8 because other methods are currenly depend on vllm. We can add other methods back to test after vllm depency is resolved.
# we only test fp8 because other methods are currently dependent on vllm. We can add other methods back to test after vllm dependency is resolved.
quantization_args_list = [
# "awq",
"fp8",
......
......@@ -116,7 +116,7 @@ class VisionLLMLogitsBase(unittest.IsolatedAsyncioTestCase):
}},
{{
"type": "text",
"text": "Whats in this picture?"
"text": "What's in this picture?"
}}
]
}}
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment