Unverified Commit 2387c22b authored by Xiaoyu Zhang's avatar Xiaoyu Zhang Committed by GitHub
Browse files

Ci monitor support performance (#10965)

parent 592ddf37
......@@ -32,7 +32,7 @@ jobs:
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install requests
pip install requests matplotlib pandas
- name: Run CI Analysis
env:
......@@ -43,9 +43,20 @@ jobs:
cd scripts/ci_monitor
python ci_analyzer.py --token $GITHUB_TOKEN --limit ${{ github.event.inputs.limit || '1000' }} --output ci_analysis_$(date +%Y%m%d_%H%M%S).json
- name: Run Performance Analysis
env:
GITHUB_TOKEN: ${{ secrets.GH_PAT_FOR_NIGHTLY_CI }}
PYTHONUNBUFFERED: 1
PYTHONIOENCODING: utf-8
run: |
cd scripts/ci_monitor
python ci_analyzer_perf.py --token $GITHUB_TOKEN --limit 500 --output-dir performance_tables_$(date +%Y%m%d_%H%M%S)
- name: Upload Analysis Results
uses: actions/upload-artifact@v4
with:
name: ci-analysis-results-${{ github.run_number }}
path: scripts/ci_monitor/ci_analysis_*.json
path: |
scripts/ci_monitor/ci_analysis_*.json
scripts/ci_monitor/performance_tables_*
retention-days: 30
# SGLang CI Monitor
A simple tool to analyze CI failures for the SGLang project. This tool fetches recent CI run data from GitHub Actions and provides detailed analysis of failure patterns.
> **Note**: This README.md is primarily generated by Claude 4 with some manual adjustments.
A comprehensive toolkit to analyze CI failures and performance trends for the SGLang project. This toolkit includes two main tools:
1. **CI Analyzer** (`ci_analyzer.py`): Analyzes CI failures and provides detailed failure pattern analysis
2. **Performance Analyzer** (`ci_analyzer_perf.py`): Tracks performance metrics over time and generates trend charts
## Features
### CI Analyzer (`ci_analyzer.py`)
- **Simple Analysis**: Analyze recent CI runs and identify failure patterns
- **Category Classification**: Automatically categorize failures by type (unit-test, performance, etc.)
- **Pattern Recognition**: Identify common failure patterns (timeouts, build failures, etc.)
- **CI Links**: Direct links to recent failed CI runs for detailed investigation
- **Last Success Tracking**: Track the last successful run for each failed job with PR information
- **JSON Export**: Export detailed analysis data to JSON format
- **Automated Monitoring**: GitHub Actions workflow for continuous CI monitoring
### Performance Analyzer (`ci_analyzer_perf.py`)
- **Performance Tracking**: Monitor performance metrics across CI runs over time
- **Automated Chart Generation**: Generate time-series charts for each performance metric
- **Multi-Test Support**: Track performance for all test types (throughput, latency, accuracy)
- **CSV Export**: Export performance data in structured CSV format
- **Trend Analysis**: Visualize performance trends with interactive charts
- **Comprehensive Metrics**: Track output throughput, E2E latency, TTFT, accept length, and more
### Common Features
- **Automated Monitoring**: GitHub Actions workflow for continuous CI and performance monitoring
## Installation
### For CI Analyzer
No additional dependencies required beyond Python standard library and `requests`:
```bash
pip install requests
```
### For Performance Analyzer
Additional dependencies required for chart generation:
```bash
pip install requests matplotlib pandas
```
## Usage
### Basic Usage
### CI Analyzer
#### Basic Usage
```bash
# Replace YOUR_GITHUB_TOKEN with your actual token from https://github.com/settings/tokens
python ci_analyzer.py --token YOUR_GITHUB_TOKEN
```
### Advanced Usage
#### Advanced Usage
```bash
# Analyze last 1000 runs
......@@ -39,16 +65,45 @@ python ci_analyzer.py --token YOUR_GITHUB_TOKEN --limit 1000
python ci_analyzer.py --token YOUR_GITHUB_TOKEN --limit 500 --output my_analysis.json
```
### Performance Analyzer
#### Basic Usage
```bash
# Analyze performance trends from recent CI runs
python ci_analyzer_perf.py --token YOUR_GITHUB_TOKEN
```
#### Advanced Usage
```bash
# Analyze last 1000 PR Test runs
python ci_analyzer_perf.py --token YOUR_GITHUB_TOKEN --limit 1000
# Custom output directory
python ci_analyzer_perf.py --token YOUR_GITHUB_TOKEN --limit 500 --output-dir my_performance_data
```
**Important**: Make sure your GitHub token has `repo` and `workflow` permissions, otherwise you'll get 404 errors.
## Parameters
### CI Analyzer Parameters
| Parameter | Default | Description |
|-----------|---------|-------------|
| `--token` | Required | GitHub Personal Access Token |
| `--limit` | 100 | Number of CI runs to analyze |
| `--output` | ci_analysis.json | Output JSON file for detailed data |
### Performance Analyzer Parameters
| Parameter | Default | Description |
|-----------|---------|-------------|
| `--token` | Required | GitHub Personal Access Token |
| `--limit` | 100 | Number of PR Test runs to analyze |
| `--output-dir` | performance_tables | Output directory for CSV tables and PNG charts |
## Getting GitHub Token
1. Go to [GitHub Settings > Personal Access Tokens](https://github.com/settings/tokens)
......@@ -62,15 +117,15 @@ python ci_analyzer.py --token YOUR_GITHUB_TOKEN --limit 500 --output my_analysis
## Output
The tool provides:
### CI Analyzer Output
### Console Output
#### Console Output
- Overall statistics (total runs, success rate, etc.)
- Category failure breakdown
- Most frequently failed jobs (Top 50) with direct CI links
- Failure pattern analysis
### JSON Export
#### JSON Export
Detailed analysis data including:
- Complete failure statistics
- Job failure counts
......@@ -78,8 +133,51 @@ Detailed analysis data including:
- Failure patterns
- Recent failure details
### Performance Analyzer Output
#### Console Output
- Performance data collection progress
- Summary statistics of collected tests and records
- Generated file locations (CSV tables and PNG charts)
#### File Outputs
- **CSV Tables**: Structured performance data with columns:
- `created_at`: Timestamp of the CI run
- `run_number`: GitHub Actions run number
- `pr_number`: Pull request number (if applicable)
- `author`: Developer who triggered the run
- `head_sha`: Git commit SHA
- Performance metrics (varies by test type):
- `output_throughput_token_s`: Output throughput in tokens/second
- `median_e2e_latency_ms`: Median end-to-end latency in milliseconds
- `median_ttft_ms`: Median time-to-first-token in milliseconds
- `accept_length`: Accept length for speculative decoding tests
- `url`: Direct link to the GitHub Actions run
- **PNG Charts**: Time-series visualization charts for each metric:
- X-axis: Time (MM-DD HH:MM format)
- Y-axis: Performance metric values
- File naming: `{test_name}_{metric_name}.png`
#### Directory Structure
```
performance_tables/
├── performance-test-1-gpu-part-1_summary/
│ ├── test_bs1_default.csv
│ ├── test_bs1_default_output_throughput_token_s.png
│ ├── test_online_latency_default.csv
│ ├── test_online_latency_default_median_e2e_latency_ms.png
│ └── ...
├── performance-test-1-gpu-part-2_summary/
│ └── ...
└── performance-test-2-gpu_summary/
└── ...
```
## Example Output
### CI Analyzer Example
```
============================================================
......@@ -412,6 +510,58 @@ Failure Pattern Analysis:
Build Failure: 15 times
```
### Performance Analyzer Example
```
============================================================
SGLang Performance Analysis Report
============================================================
Getting recent 100 PR Test runs...
Got 100 PR test runs...
Collecting performance data from CI runs...
Processing run 34882 (2025-09-26 03:16)...
Found performance-test-1-gpu-part-1 job (success)
Found performance-test-1-gpu-part-2 job (success)
Found performance-test-2-gpu job (success)
Processing run 34881 (2025-09-26 02:45)...
Found performance-test-1-gpu-part-1 job (success)
Found performance-test-1-gpu-part-2 job (success)
...
Performance data collection completed!
Generating performance tables to directory: performance_tables
Generated table: performance_tables/performance-test-1-gpu-part-1_summary/test_bs1_default.csv
Generated chart: performance_tables/performance-test-1-gpu-part-1_summary/test_bs1_default_output_throughput_token_s.png
Generated table: performance_tables/performance-test-1-gpu-part-1_summary/test_online_latency_default.csv
Generated chart: performance_tables/performance-test-1-gpu-part-1_summary/test_online_latency_default_median_e2e_latency_ms.png
...
Performance tables and charts generation completed!
============================================================
Performance Analysis Summary
============================================================
Total PR Test runs processed: 100
Total performance tests found: 15
Total performance records collected: 1,247
Performance test breakdown:
performance-test-1-gpu-part-1: 7 tests, 423 records
performance-test-1-gpu-part-2: 5 tests, 387 records
performance-test-2-gpu: 6 tests, 437 records
Generated files:
CSV tables: 18 files
PNG charts: 18 files
Output directory: performance_tables/
Analysis completed successfully!
```
## CI Job Categories
The tool automatically categorizes CI jobs into:
......@@ -459,11 +609,17 @@ logging.basicConfig(level=logging.DEBUG)
## Automated Monitoring
The CI monitor is also available as a GitHub Actions workflow that runs automatically every 6 hours. The workflow:
Both CI and Performance analyzers are available as a GitHub Actions workflow that runs automatically every 6 hours. The workflow:
- Analyzes the last 500 CI runs
- Generates detailed reports
- Uploads analysis results as artifacts
### CI Analysis
- Analyzes the last 1000 CI runs (configurable)
- Generates detailed failure reports
- Uploads analysis results as JSON artifacts
### Performance Analysis
- Analyzes the last 1000 PR Test runs (configurable)
- Generates performance trend data and charts
- Uploads CSV tables and PNG charts as artifacts
### Workflow Configuration
......@@ -472,7 +628,16 @@ The workflow is located at `.github/workflows/ci-monitor.yml` and uses the `GH_P
### Manual Trigger
You can manually trigger the workflow from the GitHub Actions tab with custom parameters:
- `limit`: Number of CI runs to analyze (default: 500)
- `limit`: Number of CI runs to analyze (default: 1000)
### Artifacts Generated
The workflow generates and uploads the following artifacts:
- **CI Analysis**: JSON files with failure analysis data
- **Performance Analysis**:
- CSV files with performance metrics organized by test type
- PNG charts showing performance trends over time
- Directory structure: `performance_tables_{timestamp}/`
## License
......
#!/usr/bin/env python3
"""
SGLang CI Performance Analyzer - Simplified Version
Collect performance data based on actual log format
"""
import argparse
import csv
import os
import re
import sys
import time
from concurrent.futures import ThreadPoolExecutor, as_completed
from datetime import datetime
from typing import Dict, List, Optional
import matplotlib.dates as mdates
import matplotlib.pyplot as plt
import pandas as pd
import requests
from matplotlib import rcParams
class SGLangPerfAnalyzer:
"""SGLang CI Performance Analyzer"""
def __init__(self, token: str):
self.token = token
self.base_url = "https://api.github.com"
self.repo = "sgl-project/sglang"
self.headers = {
"Authorization": f"token {token}",
"Accept": "application/vnd.github.v3+json",
"User-Agent": "SGLang-Perf-Analyzer/1.0",
}
self.session = requests.Session()
self.session.headers.update(self.headers)
# Performance test job names
self.performance_jobs = [
"performance-test-1-gpu-part-1",
"performance-test-1-gpu-part-2",
"performance-test-2-gpu",
]
# Strictly match tests and metrics shown in the images
self.target_tests_and_metrics = {
"performance-test-1-gpu-part-1": {
"test_bs1_default": ["output_throughput_token_s"],
"test_online_latency_default": ["median_e2e_latency_ms"],
"test_offline_throughput_default": ["output_throughput_token_s"],
"test_offline_throughput_non_stream_small_batch_size": [
"output_throughput_token_s"
],
"test_online_latency_eagle": ["median_e2e_latency_ms", "accept_length"],
"test_lora_online_latency": ["median_e2e_latency_ms", "median_ttft_ms"],
"test_lora_online_latency_with_concurrent_adapter_updates": [
"median_e2e_latency_ms",
"median_ttft_ms",
],
},
"performance-test-1-gpu-part-2": {
"test_offline_throughput_without_radix_cache": [
"output_throughput_token_s"
],
"test_offline_throughput_with_triton_attention_backend": [
"output_throughput_token_s"
],
"test_offline_throughput_default_fp8": ["output_throughput_token_s"],
"test_vlm_offline_throughput": ["output_throughput_token_s"],
"test_vlm_online_latency": ["median_e2e_latency_ms"],
},
"performance-test-2-gpu": {
"test_moe_tp2_bs1": ["output_throughput_token_s"],
"test_torch_compile_tp2_bs1": ["output_throughput_token_s"],
"test_moe_offline_throughput_default": ["output_throughput_token_s"],
"test_moe_offline_throughput_without_radix_cache": [
"output_throughput_token_s"
],
"test_pp_offline_throughput_default_decode": [
"output_throughput_token_s"
],
"test_pp_long_context_prefill": ["input_throughput_token_s"],
},
}
# Performance metric patterns - only keep metrics needed in images
self.perf_patterns = {
# Key metrics shown in images
"output_throughput_token_s": r"Output token throughput \(tok/s\):\s*([\d.]+)",
"Output_throughput_token_s": r"Output throughput:\s*([\d.]+)\s*token/s",
"median_e2e_latency_ms": r"Median E2E Latency \(ms\):\s*([\d.]+)",
"median_ttft_ms": r"Median TTFT \(ms\):\s*([\d.]+)",
"accept_length": r"Accept length:\s*([\d.]+)",
"input_throughput_token_s": r"Input token throughput \(tok/s\):\s*([\d.]+)",
}
# Pre-compile regex patterns for better performance
self.compiled_patterns = {
name: re.compile(pattern, re.IGNORECASE)
for name, pattern in self.perf_patterns.items()
}
# Pre-compile test pattern
self.test_pattern = re.compile(
r"python3 -m unittest (test_bench_\w+\.TestBench\w+\.test_\w+)"
)
# Setup matplotlib fonts and styles
self._setup_matplotlib()
def _setup_matplotlib(self):
"""Setup matplotlib fonts and styles"""
# Set fonts
rcParams["font.sans-serif"] = ["Arial", "DejaVu Sans", "Liberation Sans"]
rcParams["axes.unicode_minus"] = False # Fix minus sign display issue
# Set chart styles
plt.style.use("default")
rcParams["figure.figsize"] = (12, 6)
rcParams["font.size"] = 10
rcParams["axes.grid"] = True
rcParams["grid.alpha"] = 0.3
def get_recent_runs(self, limit: int = 100) -> List[Dict]:
"""Get recent CI run data"""
print(f"Getting recent {limit} PR Test runs...")
pr_test_runs = []
page = 1
per_page = 100
while len(pr_test_runs) < limit:
url = f"{self.base_url}/repos/{self.repo}/actions/runs"
params = {"per_page": per_page, "page": page}
try:
response = self.session.get(url, params=params)
response.raise_for_status()
data = response.json()
if not data.get("workflow_runs"):
break
# Filter PR Test runs
current_pr_tests = [
run for run in data["workflow_runs"] if run.get("name") == "PR Test"
]
# Add to result list, but not exceed limit
for run in current_pr_tests:
if len(pr_test_runs) < limit:
pr_test_runs.append(run)
else:
break
print(f"Got {len(pr_test_runs)} PR test runs...")
# Exit if no more data on this page or reached limit
if len(data["workflow_runs"]) < per_page or len(pr_test_runs) >= limit:
break
page += 1
time.sleep(0.1) # Avoid API rate limiting
except requests.exceptions.RequestException as e:
print(f"Error getting CI data: {e}")
break
return pr_test_runs
def get_job_logs(self, run_id: int, job_name: str) -> Optional[str]:
"""Get logs for specific job with early exit optimization"""
try:
# First get job list
jobs_url = f"{self.base_url}/repos/{self.repo}/actions/runs/{run_id}/jobs"
response = self.session.get(jobs_url)
response.raise_for_status()
jobs_data = response.json()
# Find matching job with early exit
target_job = None
for job in jobs_data.get("jobs", []):
if job_name in job.get("name", ""):
# Early exit if job failed or was skipped
if job.get("conclusion") not in ["success", "neutral"]:
return None
target_job = job
break
if not target_job:
return None
# Get logs
logs_url = f"{self.base_url}/repos/{self.repo}/actions/jobs/{target_job['id']}/logs"
response = self.session.get(logs_url)
response.raise_for_status()
return response.text
except Exception as e:
# Reduce verbose error logging for common failures
if "404" not in str(e):
print(f"Failed to get job {job_name} logs: {e}")
return None
def get_all_job_logs_parallel(self, run_id: int) -> Dict[str, Optional[str]]:
"""Get logs for all performance jobs in parallel"""
def fetch_job_logs(job_name: str) -> tuple[str, Optional[str]]:
"""Fetch logs for a single job"""
logs = self.get_job_logs(run_id, job_name)
return job_name, logs
results = {}
with ThreadPoolExecutor(
max_workers=8
) as executor: # Increased concurrent requests
# Submit all job log requests
future_to_job = {
executor.submit(fetch_job_logs, job_name): job_name
for job_name in self.performance_jobs
}
# Collect results as they complete
for future in as_completed(future_to_job):
job_name, logs = future.result()
results[job_name] = logs
return results
def parse_performance_data(
self, log_content: str, job_name: str
) -> Dict[str, Dict[str, str]]:
"""Parse specified performance data from logs"""
if not log_content:
return {}
test_data = {}
# Get target tests for current job
target_tests = self.target_tests_and_metrics.get(job_name, {})
if not target_tests:
return test_data
# Find all unittest tests using pre-compiled pattern
test_matches = self.test_pattern.findall(log_content)
for test_match in test_matches:
test_name = test_match.split(".")[-1] # Extract test name
# Only process target tests
if test_name not in target_tests:
continue
# Find performance data after this test
test_section = self._extract_test_section(log_content, test_match)
if test_section:
# Only find metrics needed for this test
target_metrics = target_tests[test_name]
perf_data = {}
for metric_name in target_metrics:
if metric_name in self.compiled_patterns:
compiled_pattern = self.compiled_patterns[metric_name]
matches = compiled_pattern.findall(test_section)
if matches:
perf_data[metric_name] = matches[-1] # Take the last match
if perf_data:
test_data[test_name] = perf_data
return test_data
def _extract_test_section(self, log_content: str, test_pattern: str) -> str:
"""Extract log section for specific test"""
lines = log_content.split("\n")
test_start = -1
test_end = len(lines)
# Find test start position
for i, line in enumerate(lines):
if test_pattern in line:
test_start = i
break
if test_start == -1:
return ""
# Find test end position (next test start or major separator)
for i in range(test_start + 1, len(lines)):
line = lines[i]
if (
"python3 -m unittest" in line and "test_" in line
) or "##[group]" in line:
test_end = i
break
return "\n".join(lines[test_start:test_end])
def collect_performance_data(self, runs: List[Dict]) -> Dict[str, List[Dict]]:
"""Collect all performance data"""
print("Starting performance data collection...")
# Create data list for each test
all_test_data = {}
total_runs = len(runs)
for i, run in enumerate(runs, 1):
print(f"Processing run {i}/{total_runs}: #{run.get('run_number')}")
run_info = {
"run_number": run.get("run_number"),
"created_at": run.get("created_at"),
"head_sha": run.get("head_sha", "")[:8],
"author": run.get("head_commit", {})
.get("author", {})
.get("name", "Unknown"),
"pr_number": None,
"url": f"https://github.com/{self.repo}/actions/runs/{run.get('id')}",
}
# Extract PR number
pull_requests = run.get("pull_requests", [])
if pull_requests:
run_info["pr_number"] = pull_requests[0].get("number")
# Get all job logs in parallel
all_job_logs = self.get_all_job_logs_parallel(run.get("id"))
# Process each performance test job
for job_name, logs in all_job_logs.items():
if not logs:
continue
# Parse performance data
test_results = self.parse_performance_data(logs, job_name)
for test_name, perf_data in test_results.items():
# Create full test name including job info
full_test_name = f"{job_name}_{test_name}"
if full_test_name not in all_test_data:
all_test_data[full_test_name] = []
test_entry = {**run_info, **perf_data}
all_test_data[full_test_name].append(test_entry)
print(
f" Found {test_name} performance data: {list(perf_data.keys())}"
)
time.sleep(0.2) # Slightly longer delay between runs to be API-friendly
return all_test_data
def generate_performance_tables(
self, test_data: Dict[str, List[Dict]], output_dir: str = "performance_tables"
):
"""Generate performance data tables"""
print(f"Generating performance tables to directory: {output_dir}")
# Create output directory structure
os.makedirs(output_dir, exist_ok=True)
# Create subdirectory for each job
job_dirs = {}
for job_name in self.performance_jobs:
job_dir = os.path.join(output_dir, f"{job_name}_summary")
os.makedirs(job_dir, exist_ok=True)
job_dirs[job_name] = job_dir
# Generate table for each test
for full_test_name, data_list in test_data.items():
if not data_list:
continue
# Determine which job this test belongs to
job_name = None
test_name = full_test_name
for job in self.performance_jobs:
if full_test_name.startswith(job):
job_name = job
test_name = full_test_name[len(job) + 1 :] # Remove job prefix
break
if not job_name:
continue
job_dir = job_dirs[job_name]
table_file = os.path.join(job_dir, f"{test_name}.csv")
# Generate CSV table
self._write_csv_table(table_file, test_name, data_list)
# Generate corresponding chart
print(f" Generating chart for {test_name}...")
self._generate_chart(table_file, test_name, data_list, job_dir)
print("Performance tables and charts generation completed!")
def _write_csv_table(self, file_path: str, test_name: str, data_list: List[Dict]):
"""Write CSV table"""
if not data_list:
return
# Get all possible columns
all_columns = set()
for entry in data_list:
all_columns.update(entry.keys())
# Define column order
base_columns = ["created_at", "run_number", "pr_number", "author", "head_sha"]
perf_columns = [col for col in all_columns if col not in base_columns + ["url"]]
columns = base_columns + sorted(perf_columns) + ["url"]
with open(file_path, "w", encoding="utf-8", newline="") as f:
writer = csv.writer(f)
# Write header
writer.writerow(columns)
# Write data rows
for entry in sorted(
data_list, key=lambda x: x.get("created_at", ""), reverse=True
):
row = []
for col in columns:
value = entry.get(col, "")
if col == "created_at" and value:
# Format time to consistent format
try:
# Handle ISO 8601 format: "2025-09-26T11:16:40Z"
if "T" in value and "Z" in value:
dt = datetime.fromisoformat(
value.replace("Z", "+00:00")
)
value = dt.strftime("%Y-%m-%d %H:%M")
# If already in desired format, keep it
elif len(value) == 16 and " " in value:
# Validate format
datetime.strptime(value, "%Y-%m-%d %H:%M")
else:
# Try to parse and reformat
dt = datetime.fromisoformat(value)
value = dt.strftime("%Y-%m-%d %H:%M")
except:
# If all parsing fails, keep original value
pass
elif col == "pr_number" and value:
value = f"#{value}"
row.append(str(value))
writer.writerow(row)
print(f" Generated table: {file_path} ({len(data_list)} records)")
def _generate_chart(
self, csv_file_path: str, test_name: str, data_list: List[Dict], output_dir: str
):
"""Generate corresponding time series charts for tables"""
print(
f" Starting chart generation for {test_name} with {len(data_list)} data points"
)
if not data_list or len(data_list) < 2:
print(
f" Skipping chart for {test_name}: insufficient data ({len(data_list) if data_list else 0} records)"
)
return
try:
# Prepare data
timestamps = []
metrics_data = {}
# Get performance metric columns (exclude basic info columns)
base_columns = {
"created_at",
"run_number",
"pr_number",
"author",
"head_sha",
"url",
}
perf_metrics = []
for entry in data_list:
for key in entry.keys():
if key not in base_columns and key not in perf_metrics:
perf_metrics.append(key)
if not perf_metrics:
print(
f" Skipping chart for {test_name}: no performance metrics found"
)
return
print(f" Found performance metrics: {perf_metrics}")
# Parse data
for entry in data_list:
# Parse time
try:
time_str = entry.get("created_at", "")
if time_str:
# Handle different time formats
timestamp = None
# Try ISO 8601 format first (from GitHub API): "2025-09-26T11:16:40Z"
if "T" in time_str and "Z" in time_str:
try:
# Parse and convert to naive datetime (remove timezone info)
dt_with_tz = datetime.fromisoformat(
time_str.replace("Z", "+00:00")
)
timestamp = dt_with_tz.replace(tzinfo=None)
except:
# Fallback for older Python versions
timestamp = datetime.strptime(
time_str, "%Y-%m-%dT%H:%M:%SZ"
)
# Try CSV format: "2025-09-26 08:43"
elif " " in time_str and len(time_str) == 16:
timestamp = datetime.strptime(time_str, "%Y-%m-%d %H:%M")
# Try other common formats
else:
formats_to_try = [
"%Y-%m-%d %H:%M:%S",
"%Y-%m-%dT%H:%M:%S",
"%Y-%m-%d",
]
for fmt in formats_to_try:
try:
timestamp = datetime.strptime(time_str, fmt)
break
except:
continue
if timestamp:
timestamps.append(timestamp)
# Collect metric data
for metric in perf_metrics:
if metric not in metrics_data:
metrics_data[metric] = []
value = entry.get(metric, "")
try:
numeric_value = float(value)
metrics_data[metric].append(numeric_value)
except:
metrics_data[metric].append(None)
else:
print(
f" Failed to parse timestamp format: '{time_str}'"
)
except Exception as e:
print(f" Error processing entry: {e}")
continue
if not timestamps:
print(
f" Skipping chart for {test_name}: no valid timestamps found"
)
return
print(f" Parsed {len(timestamps)} timestamps")
# Sort by time
sorted_data = sorted(
zip(timestamps, *[metrics_data[m] for m in perf_metrics])
)
timestamps = [item[0] for item in sorted_data]
for i, metric in enumerate(perf_metrics):
metrics_data[metric] = [item[i + 1] for item in sorted_data]
# Create chart for each metric
for metric in perf_metrics:
values = metrics_data[metric]
valid_data = [
(t, v) for t, v in zip(timestamps, values) if v is not None
]
if len(valid_data) < 2:
print(
f" Skipping chart for {test_name}_{metric}: insufficient valid data ({len(valid_data)} points)"
)
continue
valid_timestamps, valid_values = zip(*valid_data)
# Create chart
plt.figure(figsize=(12, 6))
plt.plot(
valid_timestamps,
valid_values,
marker="o",
linewidth=2,
markersize=4,
)
# Set title and labels
title = f"{test_name} - {self._format_metric_name(metric)}"
plt.title(title, fontsize=14, fontweight="bold")
plt.xlabel("Time", fontsize=12)
plt.ylabel(self._get_metric_unit(metric), fontsize=12)
# Format x-axis
plt.gca().xaxis.set_major_formatter(mdates.DateFormatter("%m-%d %H:%M"))
plt.gca().xaxis.set_major_locator(
mdates.HourLocator(interval=max(1, len(valid_timestamps) // 10))
)
plt.xticks(rotation=45)
# Add grid
plt.grid(True, alpha=0.3)
# Adjust layout
plt.tight_layout()
# Save chart
chart_filename = f"{test_name}_{metric}.png"
chart_path = os.path.join(output_dir, chart_filename)
plt.savefig(chart_path, dpi=300, bbox_inches="tight")
plt.close()
print(f" Generated chart: {chart_path}")
except Exception as e:
print(f" Failed to generate chart for {test_name}: {e}")
import traceback
traceback.print_exc()
def _format_metric_name(self, metric: str) -> str:
"""Format metric name for display"""
name_mapping = {
"output_throughput_token_s": "Output Throughput",
"median_e2e_latency_ms": "Median E2E Latency",
"median_ttft_ms": "Median TTFT",
"accept_length": "Accept Length",
"input_throughput_token_s": "Input Throughput",
}
return name_mapping.get(metric, metric)
def _get_metric_unit(self, metric: str) -> str:
"""Get metric unit"""
if "throughput" in metric and "token_s" in metric:
return "token/s"
elif "latency" in metric and "ms" in metric:
return "ms"
elif "accept_length" in metric:
return "length"
else:
return "value"
def generate_summary_report(self, test_data: Dict[str, List[Dict]]):
"""Generate summary report"""
print("\n" + "=" * 60)
print("SGLang CI Performance Data Collection Report")
print("=" * 60)
total_tests = len([test for test, data in test_data.items() if data])
total_records = sum(len(data) for data in test_data.values())
print(f"\nOverall Statistics:")
print(f" Number of tests collected: {total_tests}")
print(f" Total records: {total_records}")
print(f"\nStatistics by job:")
for job_name in self.performance_jobs:
job_tests = [test for test in test_data.keys() if test.startswith(job_name)]
job_records = sum(len(test_data[test]) for test in job_tests)
print(f" {job_name}: {len(job_tests)} tests, {job_records} records")
for test in job_tests:
data = test_data[test]
test_short_name = test[len(job_name) + 1 :]
print(f" - {test_short_name}: {len(data)} records")
print("\n" + "=" * 60)
def main():
parser = argparse.ArgumentParser(description="SGLang CI Performance Analyzer")
parser.add_argument("--token", required=True, help="GitHub Personal Access Token")
parser.add_argument(
"--limit",
type=int,
default=100,
help="Number of runs to analyze (default: 100)",
)
parser.add_argument(
"--output-dir",
default="performance_tables",
help="Output directory (default: performance_tables)",
)
args = parser.parse_args()
# Create analyzer
analyzer = SGLangPerfAnalyzer(args.token)
try:
# Get CI run data
runs = analyzer.get_recent_runs(args.limit)
if not runs:
print("No CI run data found")
return
# Collect performance data
test_data = analyzer.collect_performance_data(runs)
# Generate performance tables
analyzer.generate_performance_tables(test_data, args.output_dir)
# Generate summary report
analyzer.generate_summary_report(test_data)
except Exception as e:
print(f"Error during analysis: {e}")
import traceback
traceback.print_exc()
sys.exit(1)
if __name__ == "__main__":
main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment