Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
change
sglang
Commits
1bc183c6
Unverified
Commit
1bc183c6
authored
Aug 13, 2025
by
Alex Yang
Committed by
GitHub
Aug 13, 2025
Browse files
Faster weight processing (trtllm-gen moe nvfp4) (#9162)
parent
b87aacb5
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
52 additions
and
30 deletions
+52
-30
python/sglang/srt/layers/quantization/modelopt_quant.py
python/sglang/srt/layers/quantization/modelopt_quant.py
+52
-30
No files found.
python/sglang/srt/layers/quantization/modelopt_quant.py
View file @
1bc183c6
...
@@ -737,6 +737,7 @@ class ModelOptNvFp4FusedMoEMethod(FusedMoEMethodBase):
...
@@ -737,6 +737,7 @@ class ModelOptNvFp4FusedMoEMethod(FusedMoEMethodBase):
" above."
" above."
)
)
self
.
enable_flashinfer_trtllm_moe
=
should_use_flashinfer_trtllm_moe
()
self
.
enable_flashinfer_trtllm_moe
=
should_use_flashinfer_trtllm_moe
()
self
.
_cache_permute_indices
=
{}
@
property
@
property
def
enable_flashinfer_cutlass_moe
(
self
)
->
bool
:
def
enable_flashinfer_cutlass_moe
(
self
)
->
bool
:
...
@@ -900,10 +901,15 @@ class ModelOptNvFp4FusedMoEMethod(FusedMoEMethodBase):
...
@@ -900,10 +901,15 @@ class ModelOptNvFp4FusedMoEMethod(FusedMoEMethodBase):
e2m1_and_ufp8sf_scale_to_float
,
e2m1_and_ufp8sf_scale_to_float
,
fp4_quantize
,
fp4_quantize
,
next_positive_power_of_2
,
next_positive_power_of_2
,
nvfp4_block_scale_interleave
,
reorder_rows_for_gated_act_gemm
,
reorder_rows_for_gated_act_gemm
,
shuffle_matrix_a
,
shuffle_matrix_a
,
shuffle_matrix_sf_a
,
shuffle_matrix_sf_a
,
)
)
from
flashinfer.fused_moe.core
import
(
_maybe_get_cached_w2_permute_indices
,
_maybe_get_cached_w3_w1_permute_indices
,
)
"""Prepare quantized weights for kernel (done offline with weights)."""
"""Prepare quantized weights for kernel (done offline with weights)."""
epilogue_tile_m
=
128
# FIXME: this depends on the kernel internals
epilogue_tile_m
=
128
# FIXME: this depends on the kernel internals
...
@@ -927,50 +933,66 @@ class ModelOptNvFp4FusedMoEMethod(FusedMoEMethodBase):
...
@@ -927,50 +933,66 @@ class ModelOptNvFp4FusedMoEMethod(FusedMoEMethodBase):
num_experts
,
hidden_size
,
intermediate_size
//
16
num_experts
,
hidden_size
,
intermediate_size
//
16
)
# fp8 scaling factors
)
# fp8 scaling factors
# Reorder rows of W1 and scales for fused gated activation
gemm1_weights_fp4_interleaved
=
[]
gemm1_scales_fp4_interleaved
=
[]
for
i
in
range
(
num_experts
):
gemm1_weights_fp4_interleaved
.
append
(
reorder_rows_for_gated_act_gemm
(
gemm1_weights_fp4
[
i
].
clone
())
)
gemm1_scales_fp4_interleaved
.
append
(
reorder_rows_for_gated_act_gemm
(
gemm1_scales_linear_fp4
[
i
].
clone
())
)
# Stack weights and scales for all experts
gemm1_weights_fp4_interleaved
=
torch
.
stack
(
gemm1_weights_fp4_interleaved
).
reshape
(
num_experts
,
2
*
intermediate_size
,
hidden_size
//
2
)
gemm1_scales_fp4_interleaved
=
torch
.
stack
(
gemm1_scales_fp4_interleaved
).
reshape
(
num_experts
,
2
*
intermediate_size
,
hidden_size
//
16
)
# Shuffle weights and scaling factors for transposed mma output
gemm1_weights_fp4_shuffled
=
[]
gemm1_weights_fp4_shuffled
=
[]
gemm1_scales_fp4_shuffled
=
[]
gemm1_scales_fp4_shuffled
=
[]
gemm2_weights_fp4_shuffled
=
[]
gemm2_weights_fp4_shuffled
=
[]
gemm2_scales_fp4_shuffled
=
[]
gemm2_scales_fp4_shuffled
=
[]
for
i
in
range
(
num_experts
):
for
i
in
range
(
num_experts
):
# Calculate the permute indices for the following:
# 1. Reorder rows of W1 and scales for fused gated activation
# 2. Shuffle weights and scaling factors for transposed mma output
# for both w3_w1 and w2 weights and scale factors
permute_indices
=
_maybe_get_cached_w3_w1_permute_indices
(
self
.
_cache_permute_indices
,
gemm1_weights_fp4
[
i
].
view
(
torch
.
uint8
),
epilogue_tile_m
,
)
gemm1_weights_fp4_shuffled
.
append
(
gemm1_weights_fp4_shuffled
.
append
(
shuffle_matrix_a
(
gemm1_weights_fp4
[
i
]
gemm1_weights_fp4_interleaved
[
i
].
view
(
torch
.
uint8
),
epilogue_tile_m
.
view
(
torch
.
uint8
)[
permute_indices
.
to
(
gemm1_weights_fp4
.
device
)]
.
contiguous
()
)
)
permute_sf_indices
=
_maybe_get_cached_w3_w1_permute_indices
(
self
.
_cache_permute_indices
,
gemm1_scales_linear_fp4
[
i
].
view
(
torch
.
uint8
),
epilogue_tile_m
,
num_elts_per_sf
=
16
,
)
)
gemm1_scales_fp4_shuffled
.
append
(
gemm1_scales_fp4_shuffled
.
append
(
shuffle_matrix_sf_a
(
nvfp4_block_scale_interleave
(
gemm1_scales_fp4_interleaved
[
i
].
view
(
torch
.
uint8
),
epilogue_tile_m
gemm1_scales_linear_fp4
[
i
]
.
view
(
torch
.
uint8
)[
permute_sf_indices
.
to
(
gemm1_scales_linear_fp4
.
device
)
]
.
contiguous
()
)
)
)
)
permute_indices
=
_maybe_get_cached_w2_permute_indices
(
self
.
_cache_permute_indices
,
gemm2_weights_fp4
[
i
].
view
(
torch
.
uint8
),
epilogue_tile_m
,
)
gemm2_weights_fp4_shuffled
.
append
(
gemm2_weights_fp4_shuffled
.
append
(
shuffle_matrix_a
(
gemm2_weights_fp4
[
i
]
gemm2_weights_fp4
[
i
].
view
(
torch
.
uint8
),
epilogue_tile_m
.
view
(
torch
.
uint8
)[
permute_indices
.
to
(
gemm2_weights_fp4
.
device
)]
.
contiguous
()
)
)
permute_sf_indices
=
_maybe_get_cached_w2_permute_indices
(
self
.
_cache_permute_indices
,
gemm2_scales_linear_fp4
[
i
].
view
(
torch
.
uint8
),
epilogue_tile_m
,
num_elts_per_sf
=
16
,
)
)
gemm2_scales_fp4_shuffled
.
append
(
gemm2_scales_fp4_shuffled
.
append
(
shuffle_matrix_sf_a
(
nvfp4_block_scale_interleave
(
gemm2_scales_linear_fp4
[
i
].
view
(
torch
.
uint8
),
epilogue_tile_m
gemm2_scales_linear_fp4
[
i
]
.
view
(
torch
.
uint8
)[
permute_sf_indices
.
to
(
gemm2_scales_linear_fp4
.
device
)
]
.
contiguous
()
)
)
)
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment