Unverified Commit 16eb33ff authored by Ke Bao's avatar Ke Bao Committed by GitHub
Browse files

Update vocab embedding deps and add TP switch (#1856)

parent 61cf00e1
# Adapted from https://raw.githubusercontent.com/vllm-project/vllm/v0.5.5/vllm/model_executor/layers/quantization/base_config.py # Adapted from https://raw.githubusercontent.com/vllm-project/vllm/v0.5.5/vllm/model_executor/layers/quantization/base_config.py
import inspect
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from typing import Any, Dict, List, Optional from typing import Any, Dict, List, Optional, Type
import torch import torch
from torch import nn from torch import nn
...@@ -120,3 +121,17 @@ class QuantizationConfig(ABC): ...@@ -120,3 +121,17 @@ class QuantizationConfig(ABC):
For now, this is only used by AWQ. For now, this is only used by AWQ.
""" """
raise NotImplementedError raise NotImplementedError
def method_has_implemented_embedding(
method_class: Type[QuantizeMethodBase]) -> bool:
"""
Not all quant methods have embedding implemented, so we need to check that
it exists for our given method. We check this by making sure the function
has been changed from the base implementation.
"""
base_embedding = inspect.getattr_static(QuantizeMethodBase, "embedding",
None)
class_embedding = inspect.getattr_static(method_class, "embedding", None)
return (class_embedding is not None
and class_embedding is not base_embedding)
\ No newline at end of file
# Adapted from https://github.com/vllm-project/vllm/blob/v0.6.3.post1/vllm/model_executor/layers/vocab_parallel_embedding.py
from dataclasses import dataclass
from typing import List, Optional, Sequence, Tuple
import torch
import torch.nn.functional as F
from torch.nn.parameter import Parameter, UninitializedParameter
from vllm.distributed import (
divide,
get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size,
tensor_model_parallel_all_reduce,
)
from vllm.model_executor.parameter import BasevLLMParameter
from sglang.srt.layers.quantization.base_config import (
QuantizationConfig,
QuantizeMethodBase,
method_has_implemented_embedding,
)
from sglang.srt.utils import set_weight_attrs
DEFAULT_VOCAB_PADDING_SIZE = 64
class UnquantizedEmbeddingMethod(QuantizeMethodBase):
"""Unquantized method for embeddings."""
def create_weights(self, layer: torch.nn.Module,
input_size_per_partition: int,
output_partition_sizes: List[int], input_size: int,
output_size: int, params_dtype: torch.dtype,
**extra_weight_attrs):
"""Create weights for embedding layer."""
weight = Parameter(torch.empty(sum(output_partition_sizes),
input_size_per_partition,
dtype=params_dtype),
requires_grad=False)
set_weight_attrs(weight, {"input_dim": 1, "output_dim": 0})
layer.register_parameter("weight", weight)
set_weight_attrs(weight, extra_weight_attrs)
def apply(self,
layer: torch.nn.Module,
x: torch.Tensor,
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
return F.linear(x, layer.weight, bias)
def embedding(self, layer: torch.nn.Module,
input_: torch.Tensor) -> torch.Tensor:
return F.embedding(input_, layer.weight)
def pad_vocab_size(vocab_size: int,
pad_to: int = DEFAULT_VOCAB_PADDING_SIZE) -> int:
"""Pad the vocab size to the given value."""
return ((vocab_size + pad_to - 1) // pad_to) * pad_to
def vocab_range_from_per_partition_vocab_size(
per_partition_vocab_size: int,
rank: int,
offset: int = 0) -> Sequence[int]:
index_f = rank * per_partition_vocab_size
index_l = index_f + per_partition_vocab_size
return index_f + offset, index_l + offset
def vocab_range_from_global_vocab_size(global_vocab_size: int,
rank: int,
world_size: int,
offset: int = 0) -> Sequence[int]:
per_partition_vocab_size = divide(global_vocab_size, world_size)
return vocab_range_from_per_partition_vocab_size(per_partition_vocab_size,
rank,
offset=offset)
@dataclass
class VocabParallelEmbeddingShardIndices:
"""Indices for a shard of a vocab parallel embedding."""
padded_org_vocab_start_index: int
padded_org_vocab_end_index: int
padded_added_vocab_start_index: int
padded_added_vocab_end_index: int
org_vocab_start_index: int
org_vocab_end_index: int
added_vocab_start_index: int
added_vocab_end_index: int
@property
def num_org_elements(self) -> int:
return self.org_vocab_end_index - self.org_vocab_start_index
@property
def num_added_elements(self) -> int:
return self.added_vocab_end_index - self.added_vocab_start_index
@property
def num_org_elements_padded(self) -> int:
return (self.padded_org_vocab_end_index -
self.padded_org_vocab_start_index)
@property
def num_added_elements_padded(self) -> int:
return (self.padded_added_vocab_end_index -
self.padded_added_vocab_start_index)
@property
def num_org_vocab_padding(self) -> int:
return self.num_org_elements_padded - self.num_org_elements
@property
def num_added_vocab_padding(self) -> int:
return self.num_added_elements_padded - self.num_added_elements
@property
def num_elements_padded(self) -> int:
return self.num_org_elements_padded + self.num_added_elements_padded
def __post_init__(self):
# sanity checks
assert (self.padded_org_vocab_start_index <=
self.padded_org_vocab_end_index)
assert (self.padded_added_vocab_start_index <=
self.padded_added_vocab_end_index)
assert self.org_vocab_start_index <= self.org_vocab_end_index
assert self.added_vocab_start_index <= self.added_vocab_end_index
assert self.org_vocab_start_index <= self.padded_org_vocab_start_index
assert (self.added_vocab_start_index <=
self.padded_added_vocab_start_index)
assert self.org_vocab_end_index <= self.padded_org_vocab_end_index
assert self.added_vocab_end_index <= self.padded_added_vocab_end_index
assert self.num_org_elements <= self.num_org_elements_padded
assert self.num_added_elements <= self.num_added_elements_padded
@torch.jit.script
def get_masked_input_and_mask(
input_: torch.Tensor, org_vocab_start_index: int,
org_vocab_end_index: int, num_org_vocab_padding: int,
added_vocab_start_index: int,
added_vocab_end_index: int) -> Tuple[torch.Tensor, torch.Tensor]:
# torch.jit.script will fuse all of the pointwise ops below
# into a single kernel, making it very fast
org_vocab_mask = (input_ >= org_vocab_start_index) & (input_ <
org_vocab_end_index)
added_vocab_mask = (input_ >= added_vocab_start_index) & (
input_ < added_vocab_end_index)
added_offset = added_vocab_start_index - (
org_vocab_end_index - org_vocab_start_index) - num_org_vocab_padding
valid_offset = (org_vocab_start_index *
org_vocab_mask) + (added_offset * added_vocab_mask)
vocab_mask = org_vocab_mask | added_vocab_mask
input_ = vocab_mask * (input_ - valid_offset)
return input_, ~vocab_mask
class VocabParallelEmbedding(torch.nn.Module):
"""Embedding parallelized in the vocabulary dimension.
Adapted from torch.nn.Embedding, note that we pad the vocabulary size to
make sure it is divisible by the number of model parallel GPUs.
In order to support various loading methods, we ensure that LoRA-added
embeddings are always at the end of TP-sharded tensors. In other words,
we shard base embeddings and LoRA embeddings separately (both padded),
and place them in the same tensor.
In this example, we will have the original vocab size = 1010,
added vocab size = 16 and padding to 64. Therefore, the total
vocab size with padding will be 1088 (because we first pad 1010 to
1024, add 16, and then pad to 1088).
Therefore, the tensor format looks like the following:
TP1, rank 0 (no sharding):
|< --------BASE-------- >|< -BASE PADDING-- >|< -----LORA------ >|< -LORA PADDING-- >|
corresponding token_id: | 0 | 1 | ... | 1009 | -1 | ... | -1 | 1010 | ... | 1015 | -1 | ... | -1 |
index: | 0 | 1 | ... | 1009 | 1010 | ... | 1023 | 1024 | ... | 1039 | 1040 | ... | 1087 |
TP2, rank 0:
|< --------------------BASE--------------------- >|< -----LORA------ >|< -LORA PADDING- >|
corresponding token_id: | 0 | 1 | 2 | ... | 497 | 498 | ... | 511 | 1000 | ... | 1015 | -1 | ... | -1 |
index: | 0 | 1 | 2 | ... | 497 | 498 | ... | 511 | 512 | ... | 527 | 520 | ... | 543 |
TP2, rank 1:
|< -----------BASE----------- >|< -BASE PADDING- >|< -----------LORA PADDING----------- >|
corresponding token_id: | 512 | 513 | 514 | ... | 1009 | -1 | ... | -1 | -1 | ... | -1 | -1 | ... | -1 |
index: | 0 | 1 | 2 | ... | 497 | 498 | ... | 511 | 512 | ... | 519 | 520 | ... | 543 |
Args:
num_embeddings: vocabulary size.
embedding_dim: size of hidden state.
params_dtype: type of the parameters.
org_num_embeddings: original vocabulary size (without LoRA).
padding_size: padding size for the vocabulary.
quant_config: quant config for the layer
prefix: full name of the layer in the state dict
""" # noqa: E501
def __init__(self,
num_embeddings: int,
embedding_dim: int,
params_dtype: Optional[torch.dtype] = None,
org_num_embeddings: Optional[int] = None,
padding_size: int = DEFAULT_VOCAB_PADDING_SIZE,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
enable_tp: bool = True):
super().__init__()
self.enable_tp = enable_tp
if self.enable_tp:
tp_rank = get_tensor_model_parallel_rank()
self.tp_size = get_tensor_model_parallel_world_size()
else:
tp_rank = 0
self.tp_size = 1
self.num_embeddings = num_embeddings
self.padding_size = padding_size
self.org_vocab_size = org_num_embeddings or num_embeddings
num_added_embeddings = num_embeddings - self.org_vocab_size
self.org_vocab_size_padded = pad_vocab_size(self.org_vocab_size,
self.padding_size)
self.num_embeddings_padded = pad_vocab_size(
self.org_vocab_size_padded + num_added_embeddings,
self.padding_size)
assert self.org_vocab_size_padded <= self.num_embeddings_padded
self.shard_indices = self._get_indices(self.num_embeddings_padded,
self.org_vocab_size_padded,
self.num_embeddings,
self.org_vocab_size, tp_rank,
self.tp_size)
self.embedding_dim = embedding_dim
linear_method = None
if quant_config is not None:
linear_method = quant_config.get_quant_method(self, prefix=prefix)
if linear_method is None:
linear_method = UnquantizedEmbeddingMethod()
# If we are making an embedding layer, then our quantization linear
# method must implement the embedding operation. If we are another
# layer type like ParallelLMHead, this is not important.
is_embedding_layer = type(self.__class__) is VocabParallelEmbedding
linear_method_implements_embedding = method_has_implemented_embedding(
type(linear_method))
if is_embedding_layer and not linear_method_implements_embedding:
raise NotImplementedError(
f"The class {type(linear_method).__name__} must implement "
"the 'embedding' method, see UnquantizedEmbeddingMethod.")
self.linear_method: QuantizeMethodBase = linear_method
if params_dtype is None:
params_dtype = torch.get_default_dtype()
# Divide the weight matrix along the vocaburaly dimension.
self.num_added_embeddings = self.num_embeddings - self.org_vocab_size
self.num_embeddings_per_partition = divide(self.num_embeddings_padded,
self.tp_size)
assert (self.shard_indices.num_elements_padded ==
self.num_embeddings_per_partition)
self.num_org_embeddings_per_partition = (
self.shard_indices.org_vocab_end_index -
self.shard_indices.org_vocab_start_index)
self.num_added_embeddings_per_partition = (
self.shard_indices.added_vocab_end_index -
self.shard_indices.added_vocab_start_index)
self.linear_method.create_weights(self,
self.embedding_dim,
[self.num_embeddings_per_partition],
self.embedding_dim,
self.num_embeddings_padded,
params_dtype=params_dtype,
weight_loader=self.weight_loader)
@classmethod
def _get_indices(cls, vocab_size_padded: int, org_vocab_size_padded: int,
vocab_size: int, org_vocab_size: int, tp_rank: int,
tp_size: int) -> VocabParallelEmbeddingShardIndices:
"""Get start and end indices for vocab parallel embedding, following the
layout outlined in the class docstring, based on the given tp_rank and
tp_size."""
num_added_embeddings_padded = vocab_size_padded - org_vocab_size_padded
padded_org_vocab_start_index, padded_org_vocab_end_index = (
vocab_range_from_global_vocab_size(org_vocab_size_padded, tp_rank,
tp_size))
padded_added_vocab_start_index, padded_added_vocab_end_index = (
vocab_range_from_global_vocab_size(num_added_embeddings_padded,
tp_rank,
tp_size,
offset=org_vocab_size))
# remove padding
org_vocab_start_index = min(padded_org_vocab_start_index,
org_vocab_size)
org_vocab_end_index = min(padded_org_vocab_end_index, org_vocab_size)
added_vocab_start_index = min(padded_added_vocab_start_index,
vocab_size)
added_vocab_end_index = min(padded_added_vocab_end_index, vocab_size)
return VocabParallelEmbeddingShardIndices(
padded_org_vocab_start_index, padded_org_vocab_end_index,
padded_added_vocab_start_index, padded_added_vocab_end_index,
org_vocab_start_index, org_vocab_end_index,
added_vocab_start_index, added_vocab_end_index)
def get_sharded_to_full_mapping(self) -> Optional[List[int]]:
"""Get a mapping that can be used to reindex the gathered
logits for sampling.
During sampling, we gather logits from all ranks. The relationship
of index->token_id will follow the same format as outlined in the class
docstring. However, after the gather, we want to reindex the final
logits tensor to map index->token_id one-to-one (the index is always
equal the token_id it corresponds to). The indices returned by this
method allow us to do that.
"""
if self.tp_size < 2:
return None
base_embeddings: List[int] = []
added_embeddings: List[int] = []
padding: List[int] = []
for tp_rank in range(self.tp_size):
shard_indices = self._get_indices(self.num_embeddings_padded,
self.org_vocab_size_padded,
self.num_embeddings,
self.org_vocab_size, tp_rank,
self.tp_size)
range_start = self.num_embeddings_per_partition * tp_rank
range_end = self.num_embeddings_per_partition * (tp_rank + 1)
base_embeddings.extend(
range(range_start,
range_start + shard_indices.num_org_elements))
padding.extend(
range(range_start + shard_indices.num_org_elements,
range_start + shard_indices.num_org_elements_padded))
added_embeddings.extend(
range(
range_start + shard_indices.num_org_elements_padded,
range_start + shard_indices.num_org_elements_padded +
shard_indices.num_added_elements))
padding.extend(
range(
range_start + shard_indices.num_org_elements_padded +
shard_indices.num_added_elements,
range_start + shard_indices.num_org_elements_padded +
shard_indices.num_added_elements_padded))
assert (range_start + shard_indices.num_org_elements_padded +
shard_indices.num_added_elements_padded == range_end)
ret = base_embeddings + added_embeddings + padding
assert len(ret) == self.num_embeddings_padded
return ret
def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor):
output_dim = getattr(param, "output_dim", None)
packed_dim = getattr(param, "packed_dim", None)
# If the parameter is a gguf weight, then load it directly.
if getattr(param, "is_gguf_weight_type", None):
param.data.copy_(loaded_weight)
param.weight_type = loaded_weight.item()
return
elif isinstance(param, UninitializedParameter):
shape = list(loaded_weight.shape)
if output_dim is not None:
shape[output_dim] = shape[output_dim] // self.tp_size
param.materialize(tuple(shape), dtype=loaded_weight.dtype)
# If parameter does not have output dim, then it should
# be copied onto all gpus (e.g. g_idx for act_order gptq).
if output_dim is None:
assert param.data.shape == loaded_weight.shape
param.data.copy_(loaded_weight)
return
# Shard indexes for loading the weight
start_idx = self.shard_indices.org_vocab_start_index
shard_size = self.shard_indices.org_vocab_end_index - start_idx
# If param packed on the same dim we are sharding on, then
# need to adjust offsets of loaded weight by pack_factor.
if packed_dim is not None and packed_dim == output_dim:
packed_factor = param.packed_factor if isinstance(
param, BasevLLMParameter) else param.pack_factor
assert loaded_weight.shape[output_dim] == (self.org_vocab_size //
param.packed_factor)
start_idx = start_idx // packed_factor
shard_size = shard_size // packed_factor
else:
assert loaded_weight.shape[output_dim] == self.org_vocab_size
# Copy the data.
loaded_weight = loaded_weight.narrow(output_dim, start_idx, shard_size)
param[:loaded_weight.shape[0]].data.copy_(loaded_weight)
param[loaded_weight.shape[0]:].data.fill_(0)
def forward(self, input_):
if self.tp_size > 1:
# Build the mask.
masked_input, input_mask = get_masked_input_and_mask(
input_, self.shard_indices.org_vocab_start_index,
self.shard_indices.org_vocab_end_index,
self.shard_indices.num_org_vocab_padding,
self.shard_indices.added_vocab_start_index,
self.shard_indices.added_vocab_end_index)
else:
masked_input = input_
# Get the embeddings.
output_parallel = self.linear_method.embedding(self,
masked_input.long())
# Mask the output embedding.
if self.tp_size > 1:
output_parallel.masked_fill_(input_mask.unsqueeze(-1), 0)
# Reduce across all the model parallel GPUs.
output = tensor_model_parallel_all_reduce(output_parallel)
else:
output = output_parallel
return output
def extra_repr(self) -> str:
s = f"num_embeddings={self.num_embeddings_per_partition}"
s += f", embedding_dim={self.embedding_dim}"
s += f", org_vocab_size={self.org_vocab_size}"
s += f', num_embeddings_padded={self.num_embeddings_padded}'
if self.enable_tp:
s += f', tp_size={self.tp_size}'
return s
class ParallelLMHead(VocabParallelEmbedding):
"""Parallelized LM head.
Output logits weight matrices used in the Sampler. The weight and bias
tensors are padded to make sure they are divisible by the number of
model parallel GPUs.
Args:
num_embeddings: vocabulary size.
embedding_dim: size of hidden state.
bias: whether to use bias.
params_dtype: type of the parameters.
org_num_embeddings: original vocabulary size (without LoRA).
padding_size: padding size for the vocabulary.
"""
def __init__(self,
num_embeddings: int,
embedding_dim: int,
bias: bool = False,
params_dtype: Optional[torch.dtype] = None,
org_num_embeddings: Optional[int] = None,
padding_size: int = DEFAULT_VOCAB_PADDING_SIZE,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = ""):
super().__init__(num_embeddings, embedding_dim, params_dtype,
org_num_embeddings, padding_size, quant_config,
prefix)
self.quant_config = quant_config
if bias:
self.bias = Parameter(
torch.empty(self.num_embeddings_per_partition,
dtype=params_dtype))
set_weight_attrs(self.bias, {
"output_dim": 0,
"weight_loader": self.weight_loader,
})
else:
self.register_parameter("bias", None)
def tie_weights(self, embed_tokens: VocabParallelEmbedding):
"""Tie the weights with word embeddings."""
# GGUF quantized embed_tokens.
if self.quant_config and self.quant_config.get_name() == "gguf":
return embed_tokens
else:
self.weight = embed_tokens.weight
return self
def forward(self, input_):
del input_
raise RuntimeError("LMHead's weights should be used in the sampler.")
\ No newline at end of file
...@@ -34,10 +34,6 @@ from vllm.model_executor.layers.linear import ( ...@@ -34,10 +34,6 @@ from vllm.model_executor.layers.linear import (
RowParallelLinear, RowParallelLinear,
) )
from vllm.model_executor.layers.rotary_embedding import get_rope from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from sglang.srt.layers.activation import SiluAndMul from sglang.srt.layers.activation import SiluAndMul
...@@ -45,6 +41,10 @@ from sglang.srt.layers.layernorm import RMSNorm ...@@ -45,6 +41,10 @@ from sglang.srt.layers.layernorm import RMSNorm
from sglang.srt.layers.logits_processor import LogitsProcessor from sglang.srt.layers.logits_processor import LogitsProcessor
from sglang.srt.layers.quantization.base_config import QuantizationConfig from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.layers.radix_attention import RadixAttention from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from sglang.srt.model_executor.forward_batch_info import ForwardBatch from sglang.srt.model_executor.forward_batch_info import ForwardBatch
......
...@@ -24,10 +24,6 @@ from torch import nn ...@@ -24,10 +24,6 @@ from torch import nn
from torch.nn import LayerNorm from torch.nn import LayerNorm
from vllm.distributed import get_tensor_model_parallel_world_size from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.model_executor.layers.rotary_embedding import get_rope from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.transformers_utils.configs import ChatGLMConfig from vllm.transformers_utils.configs import ChatGLMConfig
...@@ -41,6 +37,10 @@ from sglang.srt.layers.linear import ( ...@@ -41,6 +37,10 @@ from sglang.srt.layers.linear import (
from sglang.srt.layers.logits_processor import LogitsProcessor from sglang.srt.layers.logits_processor import LogitsProcessor
from sglang.srt.layers.quantization.base_config import QuantizationConfig from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.layers.radix_attention import RadixAttention from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from sglang.srt.model_executor.forward_batch_info import ForwardBatch from sglang.srt.model_executor.forward_batch_info import ForwardBatch
LoraConfig = None LoraConfig = None
......
...@@ -50,7 +50,6 @@ from vllm.distributed import ( ...@@ -50,7 +50,6 @@ from vllm.distributed import (
get_tensor_model_parallel_world_size, get_tensor_model_parallel_world_size,
) )
from vllm.model_executor.layers.rotary_embedding import get_rope from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import VocabParallelEmbedding
from vllm.model_executor.model_loader.weight_utils import default_weight_loader from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from sglang.srt.layers.activation import SiluAndMul from sglang.srt.layers.activation import SiluAndMul
...@@ -62,6 +61,7 @@ from sglang.srt.layers.linear import ( ...@@ -62,6 +61,7 @@ from sglang.srt.layers.linear import (
from sglang.srt.layers.logits_processor import LogitsProcessor from sglang.srt.layers.logits_processor import LogitsProcessor
from sglang.srt.layers.quantization.base_config import QuantizationConfig from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.layers.radix_attention import RadixAttention from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.layers.vocab_parallel_embedding import VocabParallelEmbedding
from sglang.srt.model_executor.forward_batch_info import ForwardBatch from sglang.srt.model_executor.forward_batch_info import ForwardBatch
from sglang.srt.utils import set_weight_attrs from sglang.srt.utils import set_weight_attrs
......
...@@ -27,11 +27,6 @@ from vllm.distributed import ( ...@@ -27,11 +27,6 @@ from vllm.distributed import (
) )
from vllm.model_executor.layers.fused_moe import fused_moe from vllm.model_executor.layers.fused_moe import fused_moe
from vllm.model_executor.layers.rotary_embedding import get_rope from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
DEFAULT_VOCAB_PADDING_SIZE,
ParallelLMHead,
VocabParallelEmbedding,
)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.transformers_utils.configs.dbrx import DbrxConfig from vllm.transformers_utils.configs.dbrx import DbrxConfig
...@@ -43,6 +38,11 @@ from sglang.srt.layers.linear import ( ...@@ -43,6 +38,11 @@ from sglang.srt.layers.linear import (
from sglang.srt.layers.logits_processor import LogitsProcessor from sglang.srt.layers.logits_processor import LogitsProcessor
from sglang.srt.layers.quantization.base_config import QuantizationConfig from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.layers.radix_attention import RadixAttention from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.layers.vocab_parallel_embedding import (
DEFAULT_VOCAB_PADDING_SIZE,
ParallelLMHead,
VocabParallelEmbedding,
)
from sglang.srt.model_executor.forward_batch_info import ForwardBatch from sglang.srt.model_executor.forward_batch_info import ForwardBatch
from sglang.srt.utils import set_weight_attrs from sglang.srt.utils import set_weight_attrs
......
...@@ -28,10 +28,6 @@ from vllm.distributed import ( ...@@ -28,10 +28,6 @@ from vllm.distributed import (
) )
from vllm.model_executor.layers.fused_moe import fused_moe from vllm.model_executor.layers.fused_moe import fused_moe
from vllm.model_executor.layers.rotary_embedding import get_rope from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from sglang.srt.layers.activation import SiluAndMul from sglang.srt.layers.activation import SiluAndMul
...@@ -45,6 +41,10 @@ from sglang.srt.layers.linear import ( ...@@ -45,6 +41,10 @@ from sglang.srt.layers.linear import (
from sglang.srt.layers.logits_processor import LogitsProcessor from sglang.srt.layers.logits_processor import LogitsProcessor
from sglang.srt.layers.quantization.base_config import QuantizationConfig from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.layers.radix_attention import RadixAttention from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from sglang.srt.model_executor.forward_batch_info import ForwardBatch from sglang.srt.model_executor.forward_batch_info import ForwardBatch
......
...@@ -27,10 +27,6 @@ from vllm.distributed import ( ...@@ -27,10 +27,6 @@ from vllm.distributed import (
) )
from vllm.model_executor.layers.fused_moe import FusedMoE from vllm.model_executor.layers.fused_moe import FusedMoE
from vllm.model_executor.layers.rotary_embedding import get_rope from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from sglang.srt.layers.activation import SiluAndMul from sglang.srt.layers.activation import SiluAndMul
...@@ -44,6 +40,10 @@ from sglang.srt.layers.linear import ( ...@@ -44,6 +40,10 @@ from sglang.srt.layers.linear import (
from sglang.srt.layers.logits_processor import LogitsProcessor from sglang.srt.layers.logits_processor import LogitsProcessor
from sglang.srt.layers.quantization.base_config import QuantizationConfig from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.layers.radix_attention import RadixAttention from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from sglang.srt.managers.schedule_batch import global_server_args_dict from sglang.srt.managers.schedule_batch import global_server_args_dict
from sglang.srt.model_executor.forward_batch_info import ForwardBatch from sglang.srt.model_executor.forward_batch_info import ForwardBatch
from sglang.srt.utils import is_flashinfer_available from sglang.srt.utils import is_flashinfer_available
......
...@@ -23,10 +23,6 @@ import torch ...@@ -23,10 +23,6 @@ import torch
from torch import nn from torch import nn
from vllm.distributed import get_tensor_model_parallel_world_size from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.model_executor.layers.rotary_embedding import get_rope from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from sglang.srt.layers.activation import SiluAndMul from sglang.srt.layers.activation import SiluAndMul
...@@ -39,6 +35,10 @@ from sglang.srt.layers.linear import ( ...@@ -39,6 +35,10 @@ from sglang.srt.layers.linear import (
from sglang.srt.layers.logits_processor import LogitsProcessor, LogitsProcessorOutput from sglang.srt.layers.logits_processor import LogitsProcessor, LogitsProcessorOutput
from sglang.srt.layers.quantization.base_config import QuantizationConfig from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.layers.radix_attention import RadixAttention from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from sglang.srt.model_executor.forward_batch_info import ForwardBatch from sglang.srt.model_executor.forward_batch_info import ForwardBatch
......
...@@ -24,7 +24,6 @@ from transformers import PretrainedConfig ...@@ -24,7 +24,6 @@ from transformers import PretrainedConfig
from vllm.config import LoRAConfig from vllm.config import LoRAConfig
from vllm.distributed import get_tensor_model_parallel_world_size from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.model_executor.layers.rotary_embedding import get_rope from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import VocabParallelEmbedding
from vllm.model_executor.model_loader.weight_utils import default_weight_loader from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from sglang.srt.layers.activation import GeluAndMul from sglang.srt.layers.activation import GeluAndMul
...@@ -37,6 +36,7 @@ from sglang.srt.layers.linear import ( ...@@ -37,6 +36,7 @@ from sglang.srt.layers.linear import (
from sglang.srt.layers.logits_processor import LogitsProcessor from sglang.srt.layers.logits_processor import LogitsProcessor
from sglang.srt.layers.quantization.base_config import QuantizationConfig from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.layers.radix_attention import RadixAttention from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.layers.vocab_parallel_embedding import VocabParallelEmbedding
from sglang.srt.model_executor.forward_batch_info import ForwardBatch from sglang.srt.model_executor.forward_batch_info import ForwardBatch
......
...@@ -24,7 +24,6 @@ from vllm.config import LoRAConfig ...@@ -24,7 +24,6 @@ from vllm.config import LoRAConfig
from vllm.distributed import get_tensor_model_parallel_world_size from vllm.distributed import get_tensor_model_parallel_world_size
# from vllm.model_executor.layers.rotary_embedding import GemmaRotaryEmbedding # from vllm.model_executor.layers.rotary_embedding import GemmaRotaryEmbedding
from vllm.model_executor.layers.vocab_parallel_embedding import VocabParallelEmbedding
from vllm.model_executor.model_loader.weight_utils import default_weight_loader from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from sglang.srt.layers.activation import GeluAndMul from sglang.srt.layers.activation import GeluAndMul
...@@ -37,6 +36,7 @@ from sglang.srt.layers.linear import ( ...@@ -37,6 +36,7 @@ from sglang.srt.layers.linear import (
from sglang.srt.layers.logits_processor import LogitsProcessor from sglang.srt.layers.logits_processor import LogitsProcessor
from sglang.srt.layers.quantization.base_config import QuantizationConfig from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.layers.radix_attention import RadixAttention from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.layers.vocab_parallel_embedding import VocabParallelEmbedding
from sglang.srt.model_executor.forward_batch_info import ForwardBatch from sglang.srt.model_executor.forward_batch_info import ForwardBatch
......
...@@ -37,6 +37,7 @@ from sglang.srt.layers.linear import ( ...@@ -37,6 +37,7 @@ from sglang.srt.layers.linear import (
from sglang.srt.layers.logits_processor import LogitsProcessor from sglang.srt.layers.logits_processor import LogitsProcessor
from sglang.srt.layers.quantization.base_config import QuantizationConfig from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.layers.radix_attention import RadixAttention from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.layers.vocab_parallel_embedding import VocabParallelEmbedding
from sglang.srt.model_executor.forward_batch_info import ForwardBatch from sglang.srt.model_executor.forward_batch_info import ForwardBatch
......
...@@ -23,7 +23,6 @@ from torch import nn ...@@ -23,7 +23,6 @@ from torch import nn
from transformers import GPTBigCodeConfig from transformers import GPTBigCodeConfig
from vllm.config import LoRAConfig from vllm.config import LoRAConfig
from vllm.distributed import get_tensor_model_parallel_world_size from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.model_executor.layers.vocab_parallel_embedding import VocabParallelEmbedding
from vllm.model_executor.model_loader.weight_utils import default_weight_loader from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from sglang.srt.layers.activation import get_act_fn from sglang.srt.layers.activation import get_act_fn
...@@ -35,6 +34,7 @@ from sglang.srt.layers.linear import ( ...@@ -35,6 +34,7 @@ from sglang.srt.layers.linear import (
from sglang.srt.layers.logits_processor import LogitsProcessor from sglang.srt.layers.logits_processor import LogitsProcessor
from sglang.srt.layers.quantization.base_config import QuantizationConfig from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.layers.radix_attention import RadixAttention from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.layers.vocab_parallel_embedding import VocabParallelEmbedding
from sglang.srt.model_executor.forward_batch_info import ForwardBatch from sglang.srt.model_executor.forward_batch_info import ForwardBatch
......
...@@ -28,10 +28,6 @@ from vllm.distributed import ( ...@@ -28,10 +28,6 @@ from vllm.distributed import (
get_tensor_model_parallel_world_size, get_tensor_model_parallel_world_size,
) )
from vllm.model_executor.layers.rotary_embedding import get_rope from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from vllm.model_executor.model_loader.loader import DefaultModelLoader from vllm.model_executor.model_loader.loader import DefaultModelLoader
from vllm.model_executor.model_loader.weight_utils import default_weight_loader from vllm.model_executor.model_loader.weight_utils import default_weight_loader
...@@ -45,6 +41,10 @@ from sglang.srt.layers.linear import ( ...@@ -45,6 +41,10 @@ from sglang.srt.layers.linear import (
from sglang.srt.layers.logits_processor import LogitsProcessor from sglang.srt.layers.logits_processor import LogitsProcessor
from sglang.srt.layers.quantization.base_config import QuantizationConfig from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.layers.radix_attention import RadixAttention from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from sglang.srt.model_executor.forward_batch_info import ForwardBatch from sglang.srt.model_executor.forward_batch_info import ForwardBatch
......
...@@ -23,10 +23,6 @@ from torch import nn ...@@ -23,10 +23,6 @@ from torch import nn
from transformers import PretrainedConfig from transformers import PretrainedConfig
from vllm.distributed import get_tensor_model_parallel_world_size from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.model_executor.layers.rotary_embedding import get_rope from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from sglang.srt.layers.activation import SiluAndMul from sglang.srt.layers.activation import SiluAndMul
...@@ -39,6 +35,10 @@ from sglang.srt.layers.linear import ( ...@@ -39,6 +35,10 @@ from sglang.srt.layers.linear import (
from sglang.srt.layers.logits_processor import LogitsProcessor from sglang.srt.layers.logits_processor import LogitsProcessor
from sglang.srt.layers.quantization.base_config import QuantizationConfig from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.layers.radix_attention import RadixAttention from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from sglang.srt.model_executor.forward_batch_info import ForwardBatch from sglang.srt.model_executor.forward_batch_info import ForwardBatch
......
...@@ -24,10 +24,6 @@ from torch import nn ...@@ -24,10 +24,6 @@ from torch import nn
from transformers import LlamaConfig from transformers import LlamaConfig
from vllm.distributed import get_tensor_model_parallel_world_size from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.model_executor.layers.rotary_embedding import get_rope from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from sglang.srt.layers.activation import SiluAndMul from sglang.srt.layers.activation import SiluAndMul
...@@ -41,6 +37,10 @@ from sglang.srt.layers.logits_processor import LogitsProcessor, LogitsProcessorO ...@@ -41,6 +37,10 @@ from sglang.srt.layers.logits_processor import LogitsProcessor, LogitsProcessorO
from sglang.srt.layers.quantization.base_config import QuantizationConfig from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.layers.radix_attention import RadixAttention from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.layers.torchao_utils import apply_torchao_config_ from sglang.srt.layers.torchao_utils import apply_torchao_config_
from sglang.srt.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from sglang.srt.managers.schedule_batch import global_server_args_dict from sglang.srt.managers.schedule_batch import global_server_args_dict
from sglang.srt.model_executor.forward_batch_info import ForwardBatch from sglang.srt.model_executor.forward_batch_info import ForwardBatch
......
...@@ -22,10 +22,6 @@ import torch ...@@ -22,10 +22,6 @@ import torch
from torch import nn from torch import nn
from vllm.distributed import get_tensor_model_parallel_world_size from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.model_executor.layers.rotary_embedding import get_rope from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from sglang.srt.layers.activation import SiluAndMul from sglang.srt.layers.activation import SiluAndMul
...@@ -38,6 +34,10 @@ from sglang.srt.layers.linear import ( ...@@ -38,6 +34,10 @@ from sglang.srt.layers.linear import (
from sglang.srt.layers.logits_processor import LogitsProcessor from sglang.srt.layers.logits_processor import LogitsProcessor
from sglang.srt.layers.quantization.base_config import QuantizationConfig from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.layers.radix_attention import RadixAttention from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from sglang.srt.model_executor.forward_batch_info import ForwardBatch from sglang.srt.model_executor.forward_batch_info import ForwardBatch
......
...@@ -29,10 +29,6 @@ from vllm.model_executor.layers.linear import ( ...@@ -29,10 +29,6 @@ from vllm.model_executor.layers.linear import (
RowParallelLinear, RowParallelLinear,
) )
from vllm.model_executor.layers.rotary_embedding import get_rope from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from sglang.srt.layers.activation import SiluAndMul from sglang.srt.layers.activation import SiluAndMul
...@@ -40,6 +36,10 @@ from sglang.srt.layers.layernorm import RMSNorm ...@@ -40,6 +36,10 @@ from sglang.srt.layers.layernorm import RMSNorm
from sglang.srt.layers.logits_processor import LogitsProcessor from sglang.srt.layers.logits_processor import LogitsProcessor
from sglang.srt.layers.quantization.base_config import QuantizationConfig from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.layers.radix_attention import RadixAttention from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from sglang.srt.managers.schedule_batch import global_server_args_dict from sglang.srt.managers.schedule_batch import global_server_args_dict
from sglang.srt.model_executor.forward_batch_info import ForwardBatch from sglang.srt.model_executor.forward_batch_info import ForwardBatch
from sglang.srt.utils import is_flashinfer_available from sglang.srt.utils import is_flashinfer_available
......
...@@ -24,11 +24,6 @@ from transformers import MixtralConfig ...@@ -24,11 +24,6 @@ from transformers import MixtralConfig
from vllm.distributed import get_tensor_model_parallel_world_size from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.model_executor.layers.fused_moe import FusedMoE from vllm.model_executor.layers.fused_moe import FusedMoE
from vllm.model_executor.layers.rotary_embedding import get_rope from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
DEFAULT_VOCAB_PADDING_SIZE,
ParallelLMHead,
VocabParallelEmbedding,
)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from sglang.srt.layers.layernorm import RMSNorm from sglang.srt.layers.layernorm import RMSNorm
...@@ -41,6 +36,10 @@ from sglang.srt.layers.logits_processor import LogitsProcessor ...@@ -41,6 +36,10 @@ from sglang.srt.layers.logits_processor import LogitsProcessor
from sglang.srt.layers.quantization.base_config import QuantizationConfig from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.layers.radix_attention import RadixAttention from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.layers.torchao_utils import apply_torchao_config_ from sglang.srt.layers.torchao_utils import apply_torchao_config_
from sglang.srt.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from sglang.srt.managers.schedule_batch import global_server_args_dict from sglang.srt.managers.schedule_batch import global_server_args_dict
from sglang.srt.model_executor.forward_batch_info import ForwardBatch from sglang.srt.model_executor.forward_batch_info import ForwardBatch
......
...@@ -29,10 +29,6 @@ from vllm.distributed import ( ...@@ -29,10 +29,6 @@ from vllm.distributed import (
tensor_model_parallel_all_reduce, tensor_model_parallel_all_reduce,
) )
from vllm.model_executor.layers.rotary_embedding import get_rope from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from sglang.srt.layers.layernorm import RMSNorm from sglang.srt.layers.layernorm import RMSNorm
...@@ -44,6 +40,10 @@ from sglang.srt.layers.linear import ( ...@@ -44,6 +40,10 @@ from sglang.srt.layers.linear import (
from sglang.srt.layers.logits_processor import LogitsProcessor from sglang.srt.layers.logits_processor import LogitsProcessor
from sglang.srt.layers.quantization.base_config import QuantizationConfig from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.layers.radix_attention import RadixAttention from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from sglang.srt.model_executor.forward_batch_info import ForwardBatch from sglang.srt.model_executor.forward_batch_info import ForwardBatch
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment