Unverified Commit 09593e9b authored by Ying Sheng's avatar Ying Sheng Committed by GitHub
Browse files

Multi-node Tensor Parallelism (#550)


Co-authored-by: default avatarLianmin Zheng <lianminzheng@gmail.com>
parent 53a7ebd8
......@@ -20,7 +20,7 @@ python3 bench_throughput.py --backend srt --tokenizer meta-llama/Llama-2-7b-chat
```
# run synthetic
python3 synthetic_benchmark.py --backend srt --tokenizer meta-llama/Llama-2-7b-chat-hf --num-prompt 1000 --request-rate 100 --input-len 1024 --output-len 256 --port 30000
python3 bench_throughput.py --backend srt --tokenizer meta-llama/Llama-2-7b-chat-hf --num-prompt 1000 --request-rate 100 --input-len 1024 --output-len 256 --port 30000
```
......@@ -36,7 +36,7 @@ python3 bench_throughput.py --backend vllm --tokenizer meta-llama/Llama-2-7b-cha
```
# run synthetic
python3 synthetic_benchmark.py --backend vllm --tokenizer meta-llama/Llama-2-7b-chat-hf --num-prompt 1000 --request-rate 100 --input-len 1024 --output-len 256 --port 30000
python3 bench_throughput.py --backend vllm --tokenizer meta-llama/Llama-2-7b-chat-hf --num-prompt 1000 --request-rate 100 --input-len 1024 --output-len 256 --port 30000
```
......
......@@ -24,7 +24,7 @@ if __name__ == "__main__":
raise ValueError(f"Invalid backend: {args.backend}")
url = f"{args.host}:{args.port}"
a = random.randint(0, 1 << 20)
a = 20
max_new_tokens = 256
prompt = f"{a, }"
......
......@@ -2,7 +2,8 @@
import argparse
from sglang.srt.server import ServerArgs, launch_server
from sglang.srt.server import launch_server
from sglang.srt.server_args import ServerArgs
if __name__ == "__main__":
parser = argparse.ArgumentParser()
......
......@@ -76,8 +76,9 @@ def start_controller_process(
)
try:
tp_size_local = server_args.tp_size // server_args.nnodes
model_client = ModelTpClient(
list(range(server_args.tp_size)),
[i for _ in range(server_args.nnodes) for i in range(tp_size_local)],
server_args,
port_args.model_port_args[0],
model_overide_args,
......
......@@ -246,12 +246,16 @@ class ModelRunner:
torch.cuda.set_device(self.gpu_id)
logger.info(f"[gpu_id={self.gpu_id}] Init nccl begin.")
monkey_patch_vllm_p2p_access_check(self.gpu_id)
if server_args.nccl_init_addr:
nccl_init_method = f"tcp://{server_args.nccl_init_addr}"
else:
nccl_init_method = f"tcp://127.0.0.1:{self.nccl_port}"
init_distributed_environment(
backend="nccl",
world_size=self.tp_size,
rank=self.tp_rank,
local_rank=self.gpu_id,
distributed_init_method=f"tcp://127.0.0.1:{self.nccl_port}",
distributed_init_method=nccl_init_method
)
initialize_model_parallel(tensor_model_parallel_size=self.tp_size)
total_gpu_memory = get_available_gpu_memory(
......@@ -311,7 +315,7 @@ class ModelRunner:
self.gpu_id, distributed=self.tp_size > 1
)
head_dim = self.model_config.head_dim
head_num = self.model_config.num_key_value_heads // self.tp_size
head_num = self.model_config.get_num_kv_heads(self.tp_size)
cell_size = head_num * head_dim * self.model_config.num_hidden_layers * 2 * 2
rest_memory = available_gpu_memory - total_gpu_memory * (
1 - self.mem_fraction_static
......@@ -324,7 +328,7 @@ class ModelRunner:
if self.max_total_num_tokens <= 0:
raise RuntimeError(
"Not enought memory. Please try to increase --mem-fraction-static."
"Not enough memory. Please try to increase --mem-fraction-static."
)
self.req_to_token_pool = ReqToTokenPool(
......
......@@ -37,7 +37,8 @@ from sglang.srt.utils import (
get_int_token_logit_bias,
is_multimodal_model,
set_random_seed,
start_rpyc_process,
start_rpyc_service_process,
connect_rpyc_service,
suppress_other_loggers,
)
from sglang.utils import get_exception_traceback
......@@ -770,12 +771,17 @@ class ModelTpClient:
else:
with ThreadPoolExecutor(self.tp_size) as executor:
# Launch model processes
rets = executor.map(
lambda args: start_rpyc_process(*args),
if server_args.nnodes == 1:
self.procs = list(executor.map(
lambda args: start_rpyc_service_process(*args),
[(ModelTpService, p) for p in model_port_args.model_tp_ports],
)
self.model_services = [x[0] for x in rets]
self.procs = [x[1] for x in rets]
))
addrs = [("localhost", p) for p in model_port_args.model_tp_ports]
else:
addrs = [(ip, port) for ip, port in zip(model_port_args.model_tp_ips, model_port_args.model_tp_ports)]
self.model_services = list(executor.map(
lambda args: connect_rpyc_service(*args), addrs))
# Init model
def init_model(i):
......@@ -787,7 +793,7 @@ class ModelTpClient:
model_overide_args,
)
self.model_servers = executor.map(init_model, range(self.tp_size))
self.model_servers = list(executor.map(init_model, range(self.tp_size)))
# Wrap functions
def async_wrap(func_name):
......
......@@ -71,7 +71,11 @@ class ModelConfig:
return 1
# For DBRX and MPT
if self.hf_config.model_type in ["dbrx", "mpt"]:
if self.hf_config.model_type in ["mpt"]:
if "kv_n_heads" in self.hf_config.attn_config:
return self.hf_config.attn_config["kv_n_heads"]
return self.hf_config.num_attention_heads
if self.hf_config.model_type in ["dbrx"]:
return getattr(
self.hf_config.attn_config,
"kv_n_heads",
......
......@@ -35,6 +35,7 @@ from sglang.srt.managers.controller.manager_multi import (
from sglang.srt.managers.controller.manager_single import (
start_controller_process as start_controller_process_single,
)
from sglang.srt.managers.controller.tp_worker import ModelTpService
from sglang.srt.managers.detokenizer_manager import start_detokenizer_process
from sglang.srt.managers.io_struct import GenerateReqInput
from sglang.srt.managers.tokenizer_manager import TokenizerManager
......@@ -50,9 +51,13 @@ from sglang.srt.utils import (
allocate_init_ports,
assert_pkg_version,
enable_show_time_cost,
send_addrs_to_rank_0,
receive_addrs,
start_rpyc_service_process,
)
from sglang.utils import get_exception_traceback
asyncio.set_event_loop_policy(uvloop.EventLoopPolicy())
......@@ -151,21 +156,23 @@ def launch_server(server_args: ServerArgs, pipe_finish_writer, model_overide_arg
load_chat_template_for_openai_api(server_args.chat_template)
# Allocate ports
assert server_args.tp_size % server_args.nnodes == 0
tp_size_local = server_args.tp_size // server_args.nnodes
server_args.port, server_args.additional_ports = allocate_init_ports(
server_args.port,
server_args.additional_ports,
server_args.tp_size,
tp_size_local,
server_args.dp_size,
)
ports = server_args.additional_ports
tp = server_args.tp_size
model_port_args = []
for i in range(server_args.dp_size):
model_port_args.append(
ModelPortArgs(
nccl_port=ports[3 + i * (tp + 1)],
model_tp_ports=ports[3 + i * (tp + 1) + 1 : 3 + (i + 1) * (tp + 1)],
nccl_port=ports[3 + i * (tp_size_local + 1)],
model_tp_ips=[None] * tp_size_local,
model_tp_ports=ports[3 + i * (tp_size_local + 1) + 1 : 3 + (i + 1) * (tp_size_local + 1)],
)
)
port_args = PortArgs(
......@@ -175,6 +182,20 @@ def launch_server(server_args: ServerArgs, pipe_finish_writer, model_overide_arg
model_port_args=model_port_args,
)
# TODO multi-node dp is not supported
assert not (server_args.dp_size > 1 and server_args.node_rank is not None)
if server_args.nnodes > 1:
if server_args.node_rank != 0:
send_addrs_to_rank_0(model_port_args[0], server_args)
else:
receive_addrs(model_port_args[0], server_args)
for i in range(tp_size_local):
start_rpyc_service_process(ModelTpService, model_port_args[0].model_tp_ports[i])
if server_args.node_rank != 0:
print("Listen for connections...")
while True:
pass
# Launch processes
tokenizer_manager = TokenizerManager(server_args, port_args, model_overide_args)
pipe_router_reader, pipe_router_writer = mp.Pipe(duplex=False)
......
......@@ -56,6 +56,11 @@ class ServerArgs:
disable_regex_jump_forward: bool = False
disable_disk_cache: bool = False
# Distributed args
nccl_init_addr: Optional[str] = None
nnodes: int = 1
node_rank: Optional[int] = None
def __post_init__(self):
if self.tokenizer_path is None:
self.tokenizer_path = self.model_path
......@@ -252,6 +257,24 @@ class ServerArgs:
],
)
# Multi-node distributed serving args
parser.add_argument(
"--nccl-init-addr",
type=str,
help="The nccl init address of multi-node server."
)
parser.add_argument(
"--nnodes",
type=int,
default=1,
help="Number of nodes"
)
parser.add_argument(
"--node-rank",
type=int,
help="The node rank."
)
# Optimization/debug options
parser.add_argument(
"--enable-flashinfer",
......@@ -300,6 +323,7 @@ class ServerArgs:
@dataclasses.dataclass
class ModelPortArgs:
nccl_port: int
model_tp_ips: List[str]
model_tp_ports: List[int]
......
"""Common utilities."""
import base64
import fcntl
import logging
import multiprocessing
import os
import random
import socket
import struct
import time
from importlib.metadata import PackageNotFoundError, version
from io import BytesIO
......@@ -369,23 +371,7 @@ def load_image(image_file):
return image, image_size
def init_rpyc_service(service: rpyc.Service, port: int):
t = ThreadedServer(
service=service,
port=port,
protocol_config={
"allow_public_attrs": True,
"allow_pickle": True,
"sync_request_timeout": 3600,
},
)
t.logger.setLevel(logging.WARN)
t.start()
def connect_to_rpyc_service(port, host="localhost"):
time.sleep(1)
def connect_rpyc_service(host, port):
repeat_count = 0
while repeat_count < 20:
try:
......@@ -399,22 +385,33 @@ def connect_to_rpyc_service(port, host="localhost"):
},
)
break
except ConnectionRefusedError:
except ConnectionRefusedError as e:
time.sleep(1)
repeat_count += 1
if repeat_count == 20:
raise RuntimeError("init rpc env error!")
raise RuntimeError(f"Connect rpyc error: {e}")
return con.root
def start_rpyc_process(service: rpyc.Service, port: int):
# Return the proxy and the process
proc = multiprocessing.Process(target=init_rpyc_service, args=(service, port))
def start_rpyc_service(service: rpyc.Service, port: int):
t = ThreadedServer(
service=service,
port=port,
protocol_config={
"allow_public_attrs": True,
"allow_pickle": True,
"sync_request_timeout": 3600,
},
)
t.logger.setLevel(logging.WARN)
t.start()
def start_rpyc_service_process(service: rpyc.Service, port: int):
proc = multiprocessing.Process(target=start_rpyc_service, args=(service, port))
proc.start()
proxy = connect_to_rpyc_service(port)
assert proc.is_alive()
return proxy, proc
return proc
def suppress_other_loggers():
......@@ -487,3 +484,66 @@ class APIKeyValidatorMiddleware(BaseHTTPMiddleware):
)
response = await call_next(request)
return response
def get_ip_address(ifname):
"""
Get the IP address of a network interface.
:param ifname: Name of the network interface (e.g., 'eth0')
:return: IP address of the network interface
"""
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
ip_address = fcntl.ioctl(
s.fileno(),
0x8915, # SIOCGIFADDR
struct.pack('256s', bytes(ifname[:15], 'utf-8'))
)[20:24]
return socket.inet_ntoa(ip_address)
def send_addrs_to_rank_0(model_port_args, server_args):
assert server_args.node_rank != 0 and server_args.dp_size == 1
import torch.distributed as dist
ifname = os.environ.get("SGLANG_SOCKET_IFNAME", os.environ.get("NCCL_SOCKET_IFNAME", "eth0"))
ip_addr = get_ip_address(ifname)
num_tp_ports = server_args.tp_size // server_args.nnodes
model_port_args.model_tp_ips[:num_tp_ports] = [ip_addr] * num_tp_ports
ip_addr = [int(x) for x in ip_addr.split(".")]
addrs_tensor = torch.tensor(ip_addr + model_port_args.model_tp_ports, dtype=torch.int)
init_method = f"tcp://{server_args.nccl_init_addr}"
dist.init_process_group(backend="gloo", init_method=init_method, rank=server_args.node_rank, world_size=server_args.nnodes)
dist.send(addrs_tensor, dst=0)
print(f"Node {server_args.node_rank} sent: ip_address {ip_addr} and ports {model_port_args.model_tp_ports}")
dist.barrier()
dist.destroy_process_group()
def receive_addrs(model_port_args, server_args):
assert server_args.node_rank == 0 and server_args.dp_size == 1
import torch.distributed as dist
ifname = os.environ.get("SGLANG_SOCKET_IFNAME", os.environ.get("NCCL_SOCKET_IFNAME", "eth0"))
ip_addr = get_ip_address(ifname)
num_tp_ports = server_args.tp_size // server_args.nnodes
model_port_args.model_tp_ips[:num_tp_ports] = [ip_addr] * num_tp_ports
init_method = f"tcp://{server_args.nccl_init_addr}"
dist.init_process_group(backend="gloo", init_method=init_method, rank=server_args.node_rank, world_size=server_args.nnodes)
for src_rank in range(1, server_args.nnodes):
tensor = torch.zeros(4 + num_tp_ports, dtype=torch.int)
dist.recv(tensor, src=src_rank)
ip = ".".join([str(x) for x in tensor[:4].tolist()])
ports = tensor[4:].tolist()
model_port_args.model_tp_ips[num_tp_ports * src_rank: num_tp_ports * (src_rank + 1)] = [ip] * num_tp_ports
model_port_args.model_tp_ports[num_tp_ports * src_rank: num_tp_ports * (src_rank + 1)] = ports
print(f"Node 0 received from rank {src_rank}: {tensor.tolist()}")
dist.barrier()
dist.destroy_process_group()
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment