Unverified Commit 01dd39ba authored by Mick's avatar Mick Committed by GitHub
Browse files

refactor: minor refactors regarding multimodal processing (#6187)

parent b3f3d610
......@@ -22,7 +22,11 @@ from typing import List, Optional, Set, Union
import torch
from transformers import PretrainedConfig
from sglang.srt.hf_transformers_utils import get_config, get_context_length
from sglang.srt.hf_transformers_utils import (
get_config,
get_context_length,
get_hf_text_config,
)
from sglang.srt.layers.quantization import QUANTIZATION_METHODS
from sglang.srt.server_args import ServerArgs
from sglang.srt.utils import get_bool_env_var, is_hip
......@@ -209,7 +213,13 @@ class ModelConfig:
# Cache attributes
self.hf_eos_token_id = self.get_hf_eos_token_id()
self.image_token_id = getattr(self.hf_config, "image_token_id", None)
config = self.hf_config
# multimodal
self.image_token_id = getattr(config, "image_token_id", None) or getattr(
config, "image_token_index", None
)
@staticmethod
def from_server_args(server_args: ServerArgs, model_path: str = None, **kwargs):
......@@ -423,31 +433,6 @@ class ModelConfig:
self.model_path = client.get_local_dir()
def get_hf_text_config(config: PretrainedConfig):
"""Get the "sub" config relevant to llm for multi modal models.
No op for pure text models.
"""
class_name = config.architectures[0]
if class_name.startswith("Llava") and class_name.endswith("ForCausalLM"):
# We support non-hf version of llava models, so we do not want to
# read the wrong values from the unused default text_config.
# NOTE(HandH1998): We set `torch_dtype` of config to `torch.float16` for the weights, as
# `torch.float16` is default used for image features in `python/sglang/srt/models/llava.py`.
setattr(config, "torch_dtype", torch.float16)
return config
if hasattr(config, "text_config"):
# The code operates under the assumption that text_config should have
# `num_attention_heads` (among others). Assert here to fail early
# if transformers config doesn't align with this assumption.
assert hasattr(config.text_config, "num_attention_heads")
return config.text_config
if hasattr(config, "language_config"):
return config.language_config
else:
return config
# adapted from https://github.com/vllm-project/vllm/blob/v0.6.4.post1/vllm/config.py
_STR_DTYPE_TO_TORCH_DTYPE = {
"half": torch.float16,
......@@ -537,6 +522,7 @@ def is_generation_model(model_architectures: List[str], is_embedding: bool = Fal
multimodal_model_archs = [
"CLIPModel",
"DeepseekVL2ForCausalLM",
"Gemma3ForConditionalGeneration",
"Grok1VForCausalLM",
......@@ -554,7 +540,6 @@ multimodal_model_archs = [
"MllamaForConditionalGeneration",
"Qwen2VLForConditionalGeneration",
"Qwen2_5_VLForConditionalGeneration",
"CLIPModel",
"KimiVLForConditionalGeneration",
"InternVLChatModel",
]
......
......@@ -19,6 +19,7 @@ import warnings
from pathlib import Path
from typing import Dict, Optional, Type, Union
import torch
from huggingface_hub import snapshot_download
from transformers import (
AutoConfig,
......@@ -65,6 +66,43 @@ def download_from_hf(model_path: str):
return snapshot_download(model_path, allow_patterns=["*.json", "*.bin", "*.model"])
def get_hf_text_config(config: PretrainedConfig):
"""Get the "sub" config relevant to llm for multi modal models.
No op for pure text models.
"""
if config.architectures is not None:
class_name = config.architectures[0]
if class_name.startswith("Llava") and class_name.endswith("ForCausalLM"):
# We support non-hf version of llava models, so we do not want to
# read the wrong values from the unused default text_config.
# NOTE(HandH1998): We set `torch_dtype` of config to `torch.float16` for the weights, as
# `torch.float16` is default used for image features in `python/sglang/srt/models/llava.py`.
setattr(config, "torch_dtype", torch.float16)
return config
if hasattr(config, "text_config"):
# The code operates under the assumption that text_config should have
# `num_attention_heads` (among others). Assert here to fail early
# if transformers config doesn't align with this assumption.
assert hasattr(config.text_config, "num_attention_heads")
return config.text_config
if hasattr(config, "language_config"):
return config.language_config
if hasattr(config, "thinker_config"):
# qwen2.5 omni
thinker_config = config.thinker_config
if hasattr(thinker_config, "text_config"):
setattr(
thinker_config.text_config,
"torch_dtype",
getattr(thinker_config, "torch_dtype", None),
)
return thinker_config.text_config
return thinker_config
else:
return config
def get_config(
model: str,
trust_remote_code: bool,
......@@ -80,13 +118,12 @@ def get_config(
config = AutoConfig.from_pretrained(
model, trust_remote_code=trust_remote_code, revision=revision, **kwargs
)
text_config = get_hf_text_config(config=config)
# FIXME: Pour contents of janus-pro's langauge_config to first-level
if isinstance(model, str) and model.lower().startswith("deepseek-ai/janus-pro"):
assert hasattr(config, "language_config")
for key, val in config.language_config.__dict__.items():
if isinstance(model, str) and text_config is not None:
for key, val in text_config.__dict__.items():
if not hasattr(config, key) and getattr(text_config, key, None) is not None:
setattr(config, key, val)
setattr(config, "architectures", ["MultiModalityCausalLM"])
if config.model_type in _CONFIG_REGISTRY:
config_class = _CONFIG_REGISTRY[config.model_type]
......@@ -99,6 +136,9 @@ def get_config(
if not hasattr(config, key):
setattr(config, key, val)
if config.model_type == "multi_modality":
config.update({"architectures": ["MultiModalityCausalLM"]})
if model_override_args:
config.update(model_override_args)
......
......@@ -120,7 +120,7 @@ class VisionSdpaAttention(nn.Module):
flatten_batch: bool = False,
) -> Optional[torch.Tensor]:
r"""
Creates a non-causal 4D mask of shape `(b, 1, s, s)` or `(1, s, s)`.
Creates a non-causal 4D mask of shape `(b, 1, s, s)` or `(1, 1, s, s)`.
Args:
s: sequence length
cu_seqlens: cumulative sequence lengths tensor. If not, returns an empty mask
......
......@@ -22,13 +22,15 @@ from dataclasses import dataclass, field
from enum import Enum
from typing import TYPE_CHECKING, Any, Dict, List, Literal, Optional, Union
from sglang.srt.mm_utils import has_valid_data
# handle serialization of Image for pydantic
if TYPE_CHECKING:
from PIL.Image import Image
else:
Image = Any
from sglang.srt.managers.schedule_batch import BaseFinishReason
from sglang.srt.managers.schedule_batch import BaseFinishReason, flatten_nested_list
from sglang.srt.sampling.sampling_params import SamplingParams
......@@ -104,6 +106,9 @@ class GenerateReqInput:
bootstrap_port: Optional[Union[List[int], int]] = None
bootstrap_room: Optional[Union[List[int], int]] = None
def contains_mm_input(self) -> bool:
return has_valid_data(self.image_data) or has_valid_data(self.audio_data)
def normalize_batch_and_arguments(self):
"""
Normalize the batch size and arguments for the request.
......@@ -487,6 +492,9 @@ class EmbeddingReqInput:
# The modalities of the image data [image, multi-images, video]
modalities: Optional[List[str]] = None
def contains_mm_input(self) -> bool:
return has_valid_data(self.image_data) or has_valid_data(self.audio_data)
def normalize_batch_and_arguments(self):
# at least one of text, input_ids, or image should be provided
if self.text is None and self.input_ids is None and self.image_data is None:
......
......@@ -2,6 +2,7 @@
Multi-modality utils
"""
import dataclasses
import logging
from abc import abstractmethod
from typing import Callable, List, Optional, Tuple
......@@ -41,11 +42,26 @@ class MultiModalityDataPaddingPattern:
class MultiModalityDataPaddingPatternTokenPairs(MultiModalityDataPaddingPattern):
"""In this pattern, data tokens should be enclosed by special token pairs (e.g. <image>...</image>, data_token_pairs)
The padded value in a region enclosed by a token pair with be the same one, as the MultimodalDataItem's pad value
This strategy should be applied when data content is marked by start/end token pairs in the input sequence.
"""
def __init__(self, data_token_pairs: Optional[List[Tuple[int, int]]]) -> None:
def __init__(
self,
data_token_pairs: Optional[List[Tuple[int, int]]],
data_start_token_ids: Optional[List[int]] = None,
) -> None:
"""
Args:
data_start_token_ids marks the start of a single multimodal data
See Minicpmo's slice_start_id for example
"""
self.data_token_id_pairs = data_token_pairs
self.data_start_token_ids = data_start_token_ids or [
s for s, _e in data_token_pairs
]
def pad_input_tokens(
self, input_ids: List[int], mm_inputs: MultimodalInputs
......@@ -79,7 +95,7 @@ class MultiModalityDataPaddingPatternTokenPairs(MultiModalityDataPaddingPattern)
for start_idx, end_idx in zip(start_indices, end_indices):
padded_ids.extend(input_ids[last_idx : start_idx + 1])
if input_ids[start_idx] in start_token_ids:
if input_ids[start_idx] in self.data_start_token_ids:
data_idx += 1
mm_inputs.data_offsets += [start_idx]
......@@ -170,7 +186,6 @@ class MultiModalityDataPaddingPatternMultimodalTokens(MultiModalityDataPaddingPa
output_ids_tensor[start_idx:end_idx] = pad_value
else:
logger.warning(f"Skipping region {i} due to None pad_value.")
return output_ids_tensor.tolist()
......@@ -202,7 +217,7 @@ def get_embedding_and_mask(
num_mm_tokens_in_input_ids = special_multimodal_mask.sum().item()
if num_mm_tokens_in_input_ids != num_mm_tokens_in_embedding:
logger.warning(
f"Number of tokens in multimodal embedding does not match those in the input text."
f"Number of tokens in multimodal embedding does not match those in the input text. "
f"Got {num_mm_tokens_in_input_ids} tokens in the text but {num_mm_tokens_in_embedding} "
"tokens from multimodal embeddings."
)
......
......@@ -36,9 +36,21 @@ class BaseMultiModalProcessorOutput:
@dataclasses.dataclass
class MultimodalSpecialTokens:
image_token: Optional[str] = None
video_token: Optional[str] = None
audio_token: Optional[str] = None
image_token: Optional[Union[int, str, List[str]]] = None
video_token: Optional[Union[int, str, List[str]]] = None
audio_token: Optional[Union[int, str, List[str]]] = None
def convert_to_str(self, token: Union[str, int], processor) -> str:
if token is None:
return token
if isinstance(token, str):
return token
return processor.tokenizer.convert_ids_to_tokens([token])[0]
def convert_to_strs(self, processor):
self.image_token = self.convert_to_str(self.image_token, processor)
self.video_token = self.convert_to_str(self.video_token, processor)
self.audio_token = self.convert_to_str(self.audio_token, processor)
image_token_regex: Optional[re.Pattern] = None
video_token_regex: Optional[re.Pattern] = None
......@@ -74,6 +86,7 @@ class BaseMultimodalProcessor(ABC):
def __init__(self, hf_config, server_args, _processor):
self.hf_config = hf_config
self._processor = _processor
self.arch = hf_config.architectures[0]
self.server_args = server_args
# FIXME: not accurate, model and image specific
self.NUM_TOKEN_PER_FRAME = 330
......@@ -260,19 +273,10 @@ class BaseMultimodalProcessor(ABC):
"""
if not return_text:
raise NotImplementedError()
if image_data is None:
image_data = []
if isinstance(multimodal_tokens.image_token, int):
multimodal_tokens.image_token = re.compile(
re.escape(
self._processor.tokenizer.convert_ids_to_tokens(
multimodal_tokens.image_token
)
)
)
else:
multimodal_tokens.image_token = multimodal_tokens.image_token
multimodal_tokens.convert_to_strs(self._processor)
multimodal_tokens_pattern = multimodal_tokens.collect()
if isinstance(prompt, list) and return_text:
......@@ -332,9 +336,9 @@ class BaseMultimodalProcessor(ABC):
new_text += text_part
out = BaseMultiModalProcessorOutput(
input_text=new_text,
images=images,
audios=audios,
input_text=new_text,
)
out.normalize()
return out
......
from typing import List, Union
import torch
from transformers import BaseImageProcessorFast
from sglang.srt.managers.multimodal_processors.base_processor import (
BaseMultimodalProcessor,
......@@ -21,33 +20,6 @@ class MiniCPMMultimodalProcessor(BaseMultimodalProcessor):
self.image_token = "(<image>./</image>)"
self.audio_token = "(<audio>./</audio>)"
def process_data_task(self, input_text, images=None, audios=None):
if isinstance(images, list) and len(images) == 0:
images = None
if isinstance(audios, list) and len(audios) == 0:
audios = None
processor = self._processor
args = {}
if isinstance(processor, BaseImageProcessorFast):
args["device"] = "cuda"
result = self._processor.__call__(
text=input_text,
images=images,
audios=audios,
return_tensors="pt",
chunk_input=True,
**args,
)
return {
"input_ids": result.input_ids,
"pixel_values": getattr(result, "pixel_values", None),
"tgt_sizes": getattr(result, "tgt_sizes", None),
"audio_features": getattr(result, "audio_features", None),
"audio_feature_lens": getattr(result, "audio_feature_lens", None),
"audio_bounds": getattr(result, "audio_bounds", None),
}
async def process_mm_data_async(
self,
image_data: List[Union[str, bytes]],
......
......@@ -324,8 +324,9 @@ class MultimodalInputs:
video_token_id: Optional[int] = None
# audio
audio_start_id: Optional[torch.Tensor] = None
audio_end_id: Optional[torch.Tensor] = None
audio_token_id: Optional[int] = None
audio_start_id: Optional[int] = None
audio_end_id: Optional[int] = None
@staticmethod
def from_dict(obj: dict):
......@@ -349,6 +350,7 @@ class MultimodalInputs:
"slice_end_id",
"audio_start_id",
"audio_end_id",
"audio_token_id",
]
for arg in optional_args:
if arg in obj:
......
......@@ -459,7 +459,9 @@ class TokenizerManager:
)
input_ids = self.tokenizer.encode(input_text)
image_inputs: Dict = await self.mm_processor.process_mm_data_async(
image_inputs: Optional[Dict] = None
if obj.contains_mm_input():
image_inputs = await self.mm_processor.process_mm_data_async(
image_data=obj.image_data,
input_text=input_text or input_ids,
request_obj=obj,
......
......@@ -36,6 +36,16 @@ from io import BytesIO
import numpy as np
from PIL import Image
from sglang.srt.utils import flatten_nested_list
def has_valid_data(data) -> bool:
if data is None:
return False
if isinstance(data, list):
return any(has_valid_data(item) for item in flatten_nested_list(data))
return True
def select_best_resolution(original_size, possible_resolutions):
"""
......
......@@ -1165,7 +1165,7 @@ class ModelRunner:
def model_is_mrope(self) -> bool:
"""Detect if the model has "mrope" rope_scaling type.
mrope requires keep "rope_deltas" between prompt and decoding phases."""
rope_scaling = getattr(self.model_config.hf_config, "rope_scaling", {})
rope_scaling = getattr(self.model_config.hf_text_config, "rope_scaling", {})
if rope_scaling is None:
return False
is_mrope_enabled = "mrope_section" in rope_scaling
......
......@@ -1520,12 +1520,15 @@ class MiniCPMO(MiniCPMBaseModel):
slice_start_id: int = mm_input.slice_start_id
slice_end_id: int = mm_input.slice_end_id
media_token_pairs = [
data_token_pairs = [
(im_start_id, im_end_id),
(slice_start_id, slice_end_id),
(mm_input.audio_start_id, mm_input.audio_end_id),
]
pattern = MultiModalityDataPaddingPatternTokenPairs(media_token_pairs)
data_start_token_ids = [im_start_id, mm_input.audio_start_id]
pattern = MultiModalityDataPaddingPatternTokenPairs(
data_token_pairs=data_token_pairs, data_start_token_ids=data_start_token_ids
)
return pattern.pad_input_tokens(input_ids, mm_input)
......
......@@ -865,7 +865,6 @@ class MllamaForConditionalGeneration(nn.Module):
pixel_values = torch.cat(
[item.pixel_values for item in mm_input.mm_items], dim=0
)
# max_num_images = max(max_num_images, sum(1 if item.is_image() else 0 for item in mm_input.items))
max_num_images = max(max_num_images, pixel_values.shape[1])
max_num_tiles = max(max_num_tiles, pixel_values.shape[2])
......
......@@ -146,6 +146,8 @@ class Qwen2_5_VisionBlock(nn.Module):
num_heads=num_heads,
projection_size=dim,
use_qkv_parallel=True,
rotary_embed="normal",
proj_bias=True,
qkv_backend=qkv_backend,
softmax_in_single_precision=softmax_in_single_precision,
flatten_batch=flatten_batch,
......
......@@ -147,8 +147,8 @@ class TestVisionChunkedPrefill(CustomTestCase):
def _test_chunked_prefill(self, batches, num_frames):
# Chunked
try:
chunked_server_pid = self.launch_server(chunked_prefill_size=1024)
try:
outputs_chunked = []
for batch, num_frame in zip(batches, num_frames):
output_chunked = self.generate_for_video(
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment