bench_sglang.py 6.38 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
"""
Bench the sglang-hosted vLM with benchmark MMMU

Usage:
    Host the VLM: python -m sglang.launch_server --model-path Qwen/Qwen2-VL-7B-Instruct --port 30000

    Benchmark: python benchmark/mmmu/bench_sglang.py --port 30000 --concurrency 16

The eval output will be logged
"""

import argparse
import asyncio
import re
import sys
import time
import traceback
from dataclasses import dataclass, field
from typing import Any, List, Optional, Tuple

import aiohttp
import openai
from data_utils import save_json
from eval_utils import (
    EvalArgs,
    eval_result,
    get_sampling_params,
    prepare_samples,
    process_result,
)
from tqdm import tqdm

from sglang.test.test_utils import add_common_sglang_args_and_parse

AIOHTTP_TIMEOUT = aiohttp.ClientTimeout(total=20 * 60 * 60)


@dataclass
class RequestFuncOutput:
    generated_text: List[str] = field(default_factory=list)
    prompt_len: List[int] = field(default_factory=list)
    output_len: List[int] = field(default_factory=list)
    latency: List[float] = field(default_factory=list)
    ttft: List[float] = field(default_factory=list)
    itl: List[float] = field(default_factory=list)  # List of inter-token latencies

    success: bool = False
    error: str = ""


async def async_request_profile(api_url: str) -> RequestFuncOutput:
    async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
        output = RequestFuncOutput()
        try:
            async with session.post(url=api_url) as response:
                if response.status == 200:
                    output.success = True
                else:
                    output.error = response.reason or ""
                    output.success = False
        except Exception:
            output.success = False
            exc_info = sys.exc_info()
            output.error = "".join(traceback.format_exception(*exc_info))

    return output


def _get_prefix_suffix(prompt: str) -> Tuple[str, str]:
    """Split the prompt into prefix and suffix."""
    prefix = prompt.split("<")[0]
    suffix = prompt.split(">", 1)[1]
    return prefix, suffix


async def process_sample(
    client: Any, sample: dict, sampling_params: dict, lora_path: Optional[str] = None
) -> Tuple[dict, str]:
    """Send a single sample to the LLM and return (sample, response)."""
    prompt = sample["final_input_prompt"]
    prefix, suffix = _get_prefix_suffix(prompt)
    image = sample["image"]
    assert image is not None
    image_path = sample["image_path"]
    extra_body = None if lora_path is None else {"lora_path": lora_path}
    response = await client.chat.completions.create(
        model="default",
        messages=[
            {
                "role": "user",
                "content": [
                    {"type": "text", "text": prefix},
                    {"type": "image_url", "image_url": {"url": image_path}},
                    {"type": "text", "text": suffix},
                ],
            }
        ],
        temperature=0,
        max_completion_tokens=sampling_params["max_new_tokens"],
        max_tokens=sampling_params["max_new_tokens"],
        extra_body=extra_body,
    )
    return sample, response.choices[0].message.content


async def process_sample_with_semaphore(
    semaphore: asyncio.Semaphore,
    client: Any,
    sample: dict,
    sampling_params: dict,
    lora_path: Optional[str] = None,
) -> Tuple[dict, str]:
    """Wrap process_sample with a semaphore for concurrency control."""
    async with semaphore:
        return await process_sample(client, sample, sampling_params, lora_path)


async def eval_mmmu(args) -> None:
    """Main evaluation loop with concurrency control."""
    eval_args = EvalArgs.from_cli_args(args)
    sampling_params = get_sampling_params(eval_args)
    samples = prepare_samples(eval_args)
    lora_path = eval_args.lora_path
    answer_dict = {}
    out_samples = {}
    client = openai.AsyncOpenAI(
        api_key="sk", base_url=f"http://127.0.0.1:{args.port}/v1"
    )
    start = time.perf_counter()
    base_url = f"http://127.0.0.1:{args.port}"

    if args.profile:
        print("Starting profiler...")
        profile_output = await async_request_profile(
            api_url=f"{base_url}/start_profile"
        )
        if profile_output.success:
            print("Profiler started")

        samples = samples[: args.profile_number]

    if args.concurrency == 1:
        # For concurrency == 1, run in sequential mode to ensure consistent order
        # this is mainly for profiling
        for sample in tqdm(samples):
            _, response = await process_sample(
                client, sample, sampling_params, lora_path
            )
            answer = (
                re.search(args.response_answer_regex, response)
                if response is not None
                else None
            )
            process_result(
                answer.group(1) if answer else response,
                sample,
                answer_dict,
                out_samples,
            )
    else:
        semaphore = asyncio.Semaphore(args.concurrency)
        tasks = [
            process_sample_with_semaphore(
                semaphore, client, sample, sampling_params, lora_path
            )
            for sample in samples
        ]

        for coro in tqdm(asyncio.as_completed(tasks), total=len(tasks)):
            sample, response = await coro
            answer = (
                re.search(args.response_answer_regex, response)
                if response is not None
                else None
            )
            process_result(
                answer.group(1) if answer else response,
                sample,
                answer_dict,
                out_samples,
            )

    if args.profile:
        print("Stopping profiler...")
        profile_output = await async_request_profile(api_url=f"{base_url}/stop_profile")
        if profile_output.success:
            print("Profiler stopped")

    print(f"Benchmark time: {time.perf_counter() - start}")
    args.output_path = "./answer_sglang.json"
    save_json(args.output_path, out_samples)
    eval_result(
        model_answer_path=args.output_path,
        answer_dict=answer_dict,
        eval_output_path="./val_sglang.json",
    )


def parse_args():
    parser = argparse.ArgumentParser()
    EvalArgs.add_cli_args(parser)
    args = add_common_sglang_args_and_parse(parser)
    return args


def main():
    args = parse_args()
    asyncio.run(eval_mmmu(args))


if __name__ == "__main__":
    main()