import torch import torch.nn as nn from mmcv.utils import build_from_cfg from mmdet.models.builder import LOSSES from mmdet.models.losses import l1_loss, smooth_l1_loss @LOSSES.register_module() class LinesL1Loss(nn.Module): def __init__(self, reduction='mean', loss_weight=1.0, beta=0.5): """ L1 loss. The same as the smooth L1 loss Args: reduction (str, optional): The method to reduce the loss. Options are "none", "mean" and "sum". loss_weight (float, optional): The weight of loss. """ super().__init__() self.reduction = reduction self.loss_weight = loss_weight self.beta = beta def forward(self, pred, target, weight=None, avg_factor=None, reduction_override=None): """Forward function. Args: pred (torch.Tensor): The prediction. shape: [bs, ...] target (torch.Tensor): The learning target of the prediction. shape: [bs, ...] weight (torch.Tensor, optional): The weight of loss for each prediction. Defaults to None. it's useful when the predictions are not all valid. avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. reduction_override (str, optional): The reduction method used to override the original reduction method of the loss. Defaults to None. """ assert reduction_override in (None, 'none', 'mean', 'sum') reduction = ( reduction_override if reduction_override else self.reduction) if self.beta > 0: loss = smooth_l1_loss( pred, target, weight, reduction=reduction, avg_factor=avg_factor, beta=self.beta) else: loss = l1_loss( pred, target, weight, reduction=reduction, avg_factor=avg_factor) num_points = pred.shape[-1] // 2 loss = loss / num_points return loss*self.loss_weight @LOSSES.register_module() class SparseLineLoss(nn.Module): def __init__( self, loss_line, num_sample=20, roi_size=(30, 60), ): super().__init__() def build(cfg, registry): if cfg is None: return None return build_from_cfg(cfg, registry) self.loss_line = build(loss_line, LOSSES) self.num_sample = num_sample self.roi_size = roi_size def forward( self, line, line_target, weight=None, avg_factor=None, prefix="", suffix="", **kwargs, ): output = {} line = self.normalize_line(line) line_target = self.normalize_line(line_target) line_loss = self.loss_line( line, line_target, weight=weight, avg_factor=avg_factor ) output[f"{prefix}loss_line{suffix}"] = line_loss return output def normalize_line(self, line): if line.shape[0] == 0: return line line = line.view(line.shape[:-1] + (self.num_sample, -1)) origin = -line.new_tensor([self.roi_size[0]/2, self.roi_size[1]/2]) line = line - origin # transform from range [0, 1] to (0, 1) eps = 1e-5 norm = line.new_tensor([self.roi_size[0], self.roi_size[1]]) + eps line = line / norm line = line.flatten(-2, -1) return line