# Quick Start ### Set up a new virtual environment ```bash conda create -n sparsedrive python=3.8 -y conda activate sparsedrive ``` ### Install dependency packpages ```bash sparsedrive_path="path/to/sparsedrive" cd ${sparsedrive_path} pip3 install --upgrade pip pip3 install torch==1.13.0+cu116 torchvision==0.14.0+cu116 torchaudio==0.13.0 --extra-index-url https://download.pytorch.org/whl/cu116 pip3 install -r requirement.txt ``` ### Compile the deformable_aggregation CUDA op ```bash cd projects/mmdet3d_plugin/ops python3 setup.py develop cd ../../../ ``` ### Prepare the data Download the [NuScenes dataset](https://www.nuscenes.org/nuscenes#download) and CAN bus expansion, put CAN bus expansion in /path/to/nuscenes, create symbolic links. ```bash cd ${sparsedrive_path} mkdir data ln -s path/to/nuscenes ./data/nuscenes ``` Pack the meta-information and labels of the dataset, and generate the required pkl files to data/infos. Note that we also generate map_annos in data_converter, with a roi_size of (30, 60) as default, if you want a different range, you can modify roi_size in tools/data_converter/nuscenes_converter.py. ```bash sh scripts/create_data.sh ``` ### Generate anchors by K-means Gnerated anchors are saved to data/kmeans and can be visualized in vis/kmeans. ```bash sh scripts/kmeans.sh ``` ### Download pre-trained weights Download the required backbone [pre-trained weights](https://download.pytorch.org/models/resnet50-19c8e357.pth). ```bash mkdir ckpt wget https://download.pytorch.org/models/resnet50-19c8e357.pth -O ckpt/resnet50-19c8e357.pth ``` ### Commence training and testing ```bash # train sh scripts/train.sh # test sh scripts/test.sh ``` ### Visualization ``` sh scripts/visualize.sh ```