match_cost.py 3.34 KB
Newer Older
lishj6's avatar
lishj6 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import torch
from mmdet.core.bbox.match_costs.builder import MATCH_COST
from mmdet.core.bbox.match_costs import build_match_cost
from torch.nn.functional import smooth_l1_loss


@MATCH_COST.register_module()
class LinesL1Cost(object):
    """LinesL1Cost.
     Args:
         weight (int | float, optional): loss_weight
    """

    def __init__(self, weight=1.0, beta=0.0, permute=False):
        self.weight = weight
        self.permute = permute
        self.beta = beta

    def __call__(self, lines_pred, gt_lines, **kwargs):
        """
        Args:
            lines_pred (Tensor): predicted normalized lines:
                [num_query, 2*num_points]
            gt_lines (Tensor): Ground truth lines
                [num_gt, 2*num_points] or [num_gt, num_permute, 2*num_points]
        Returns:
            torch.Tensor: reg_cost value with weight
                shape [num_pred, num_gt]
        """        
        if self.permute:
            assert len(gt_lines.shape) == 3
        else:
            assert len(gt_lines.shape) == 2

        num_pred, num_gt = len(lines_pred), len(gt_lines)
        if self.permute:
            # permute-invarint labels
            gt_lines = gt_lines.flatten(0, 1) # (num_gt*num_permute, 2*num_pts)

        num_pts = lines_pred.shape[-1]//2

        if self.beta > 0:
            lines_pred = lines_pred.unsqueeze(1).repeat(1, len(gt_lines), 1)
            gt_lines = gt_lines.unsqueeze(0).repeat(num_pred, 1, 1)
            dist_mat = smooth_l1_loss(lines_pred, gt_lines, reduction='none', beta=self.beta).sum(-1)
        
        else:
            dist_mat = torch.cdist(lines_pred, gt_lines, p=1)

        dist_mat = dist_mat / num_pts

        if self.permute:
            # dist_mat: (num_pred, num_gt*num_permute)
            dist_mat = dist_mat.view(num_pred, num_gt, -1) # (num_pred, num_gt, num_permute)
            dist_mat, gt_permute_index = torch.min(dist_mat, 2)
            return dist_mat * self.weight, gt_permute_index
        
        return dist_mat * self.weight


@MATCH_COST.register_module()
class MapQueriesCost(object):

    def __init__(self, cls_cost, reg_cost, iou_cost=None):

        self.cls_cost = build_match_cost(cls_cost)
        self.reg_cost = build_match_cost(reg_cost)

        self.iou_cost = None
        if iou_cost is not None:
            self.iou_cost = build_match_cost(iou_cost)

    def __call__(self, preds: dict, gts: dict, ignore_cls_cost: bool):

        # classification and bboxcost.
        cls_cost = self.cls_cost(preds['scores'], gts['labels'])

        # regression cost
        regkwargs = {}
        if 'masks' in preds and 'masks' in gts:
            assert isinstance(self.reg_cost, DynamicLinesCost), ' Issues!!'
            regkwargs = {
                'masks_pred': preds['masks'],
                'masks_gt': gts['masks'],
            }

        reg_cost = self.reg_cost(preds['lines'], gts['lines'], **regkwargs)
        if self.reg_cost.permute:
            reg_cost, gt_permute_idx = reg_cost

        # weighted sum of above three costs
        if ignore_cls_cost:
            cost = reg_cost
        else:
            cost = cls_cost + reg_cost

        # Iou
        if self.iou_cost is not None:
            iou_cost = self.iou_cost(preds['lines'],gts['lines'])
            cost += iou_cost
        
        if self.reg_cost.permute:
            return cost, gt_permute_idx
        return cost