# Copyright (c) OpenMMLab. All rights reserved. import os from collections import OrderedDict from os import path as osp from typing import List, Tuple, Union import numpy as np from nuscenes.nuscenes import NuScenes import mmcv from pyquaternion import Quaternion NameMapping = { "movable_object.barrier": "barrier", "vehicle.bicycle": "bicycle", "vehicle.bus.bendy": "bus", "vehicle.bus.rigid": "bus", "vehicle.car": "car", "vehicle.construction": "construction_vehicle", "vehicle.motorcycle": "motorcycle", "human.pedestrian.adult": "pedestrian", "human.pedestrian.child": "pedestrian", "human.pedestrian.construction_worker": "pedestrian", "human.pedestrian.police_officer": "pedestrian", "movable_object.trafficcone": "traffic_cone", "vehicle.trailer": "trailer", "vehicle.truck": "truck", } def create_nuscenes_infos( root_path, info_prefix, version="v1.0-trainval", max_sweeps=10 ): """Create info file of nuscene dataset. Given the raw data, generate its related info file in pkl format. Args: root_path (str): Path of the data root. info_prefix (str): Prefix of the info file to be generated. version (str, optional): Version of the data. Default: 'v1.0-trainval'. max_sweeps (int, optional): Max number of sweeps. Default: 10. """ from nuscenes.nuscenes import NuScenes nusc = NuScenes(version=version, dataroot=root_path, verbose=True) from nuscenes.utils import splits available_vers = ["v1.0-trainval", "v1.0-test", "v1.0-mini"] assert version in available_vers if version == "v1.0-trainval": train_scenes = splits.train val_scenes = splits.val elif version == "v1.0-test": train_scenes = splits.test val_scenes = [] elif version == "v1.0-mini": train_scenes = splits.mini_train val_scenes = splits.mini_val else: raise ValueError("unknown") # filter existing scenes. available_scenes = get_available_scenes(nusc) available_scene_names = [s["name"] for s in available_scenes] train_scenes = list( filter(lambda x: x in available_scene_names, train_scenes) ) val_scenes = list(filter(lambda x: x in available_scene_names, val_scenes)) train_scenes = set( [ available_scenes[available_scene_names.index(s)]["token"] for s in train_scenes ] ) val_scenes = set( [ available_scenes[available_scene_names.index(s)]["token"] for s in val_scenes ] ) test = "test" in version if test: print("test scene: {}".format(len(train_scenes))) else: print( "train scene: {}, val scene: {}".format( len(train_scenes), len(val_scenes) ) ) train_nusc_infos, val_nusc_infos = _fill_trainval_infos( nusc, train_scenes, val_scenes, test, max_sweeps=max_sweeps ) metadata = dict(version=version) if test: print("test sample: {}".format(len(train_nusc_infos))) data = dict(infos=train_nusc_infos, metadata=metadata) info_path = "{}_infos_test.pkl".format(info_prefix) mmcv.dump(data, info_path) else: print( "train sample: {}, val sample: {}".format( len(train_nusc_infos), len(val_nusc_infos) ) ) data = dict(infos=train_nusc_infos, metadata=metadata) info_path = "{}_infos_train.pkl".format(info_prefix) mmcv.dump(data, info_path) data["infos"] = val_nusc_infos info_val_path = "{}_infos_val.pkl".format(info_prefix) mmcv.dump(data, info_val_path) def get_available_scenes(nusc): """Get available scenes from the input nuscenes class. Given the raw data, get the information of available scenes for further info generation. Args: nusc (class): Dataset class in the nuScenes dataset. Returns: available_scenes (list[dict]): List of basic information for the available scenes. """ available_scenes = [] print("total scene num: {}".format(len(nusc.scene))) for scene in nusc.scene: scene_token = scene["token"] scene_rec = nusc.get("scene", scene_token) sample_rec = nusc.get("sample", scene_rec["first_sample_token"]) sd_rec = nusc.get("sample_data", sample_rec["data"]["LIDAR_TOP"]) has_more_frames = True scene_not_exist = False while has_more_frames: lidar_path, boxes, _ = nusc.get_sample_data(sd_rec["token"]) lidar_path = str(lidar_path) if os.getcwd() in lidar_path: # path from lyftdataset is absolute path lidar_path = lidar_path.split(f"{os.getcwd()}/")[-1] # relative path if not mmcv.is_filepath(lidar_path): scene_not_exist = True break else: break if scene_not_exist: continue available_scenes.append(scene) print("exist scene num: {}".format(len(available_scenes))) return available_scenes def _fill_trainval_infos( nusc, train_scenes, val_scenes, test=False, max_sweeps=10 ): """Generate the train/val infos from the raw data. Args: nusc (:obj:`NuScenes`): Dataset class in the nuScenes dataset. train_scenes (list[str]): Basic information of training scenes. val_scenes (list[str]): Basic information of validation scenes. test (bool, optional): Whether use the test mode. In test mode, no annotations can be accessed. Default: False. max_sweeps (int, optional): Max number of sweeps. Default: 10. Returns: tuple[list[dict]]: Information of training set and validation set that will be saved to the info file. """ train_nusc_infos = [] val_nusc_infos = [] for sample in mmcv.track_iter_progress(nusc.sample): lidar_token = sample["data"]["LIDAR_TOP"] sd_rec = nusc.get("sample_data", sample["data"]["LIDAR_TOP"]) cs_record = nusc.get( "calibrated_sensor", sd_rec["calibrated_sensor_token"] ) pose_record = nusc.get("ego_pose", sd_rec["ego_pose_token"]) lidar_path, boxes, _ = nusc.get_sample_data(lidar_token) mmcv.check_file_exist(lidar_path) info = { "lidar_path": lidar_path, "token": sample["token"], "sweeps": [], "cams": dict(), "lidar2ego_translation": cs_record["translation"], "lidar2ego_rotation": cs_record["rotation"], "ego2global_translation": pose_record["translation"], "ego2global_rotation": pose_record["rotation"], "timestamp": sample["timestamp"], } l2e_r = info["lidar2ego_rotation"] l2e_t = info["lidar2ego_translation"] e2g_r = info["ego2global_rotation"] e2g_t = info["ego2global_translation"] l2e_r_mat = Quaternion(l2e_r).rotation_matrix e2g_r_mat = Quaternion(e2g_r).rotation_matrix # obtain 6 image's information per frame camera_types = [ "CAM_FRONT", "CAM_FRONT_RIGHT", "CAM_FRONT_LEFT", "CAM_BACK", "CAM_BACK_LEFT", "CAM_BACK_RIGHT", ] for cam in camera_types: cam_token = sample["data"][cam] cam_path, _, cam_intrinsic = nusc.get_sample_data(cam_token) cam_info = obtain_sensor2top( nusc, cam_token, l2e_t, l2e_r_mat, e2g_t, e2g_r_mat, cam ) cam_info.update(cam_intrinsic=cam_intrinsic) info["cams"].update({cam: cam_info}) # obtain sweeps for a single key-frame sd_rec = nusc.get("sample_data", sample["data"]["LIDAR_TOP"]) sweeps = [] while len(sweeps) < max_sweeps: if not sd_rec["prev"] == "": sweep = obtain_sensor2top( nusc, sd_rec["prev"], l2e_t, l2e_r_mat, e2g_t, e2g_r_mat, "lidar", ) sweeps.append(sweep) sd_rec = nusc.get("sample_data", sd_rec["prev"]) else: break info["sweeps"] = sweeps # obtain annotation if not test: annotations = [ nusc.get("sample_annotation", token) for token in sample["anns"] ] locs = np.array([b.center for b in boxes]).reshape(-1, 3) dims = np.array([b.wlh for b in boxes]).reshape(-1, 3) rots = np.array( [b.orientation.yaw_pitch_roll[0] for b in boxes] ).reshape(-1, 1) velocity = np.array( [nusc.box_velocity(token)[:2] for token in sample["anns"]] ) valid_flag = np.array( [ (anno["num_lidar_pts"] + anno["num_radar_pts"]) > 0 for anno in annotations ], dtype=bool, ).reshape(-1) # convert velo from global to lidar for i in range(len(boxes)): velo = np.array([*velocity[i], 0.0]) velo = ( velo @ np.linalg.inv(e2g_r_mat).T @ np.linalg.inv(l2e_r_mat).T ) velocity[i] = velo[:2] names = [b.name for b in boxes] for i in range(len(names)): if names[i] in NameMapping: names[i] = NameMapping[names[i]] names = np.array(names) # we need to convert box size to # the format of our lidar coordinate system # which is x_size, y_size, z_size (corresponding to l, w, h) gt_boxes = np.concatenate([locs, dims[:, [1, 0, 2]], rots], axis=1) assert len(gt_boxes) == len( annotations ), f"{len(gt_boxes)}, {len(annotations)}" info["instance_inds"] = np.array( [ nusc.getind("instance", x["instance_token"]) for x in annotations ] ) info["gt_boxes"] = gt_boxes info["gt_names"] = names info["gt_velocity"] = velocity.reshape(-1, 2) info["num_lidar_pts"] = np.array( [a["num_lidar_pts"] for a in annotations] ) info["num_radar_pts"] = np.array( [a["num_radar_pts"] for a in annotations] ) info["valid_flag"] = valid_flag if sample["scene_token"] in train_scenes: train_nusc_infos.append(info) else: val_nusc_infos.append(info) return train_nusc_infos, val_nusc_infos def obtain_sensor2top( nusc, sensor_token, l2e_t, l2e_r_mat, e2g_t, e2g_r_mat, sensor_type="lidar" ): """Obtain the info with RT matric from general sensor to Top LiDAR. Args: nusc (class): Dataset class in the nuScenes dataset. sensor_token (str): Sample data token corresponding to the specific sensor type. l2e_t (np.ndarray): Translation from lidar to ego in shape (1, 3). l2e_r_mat (np.ndarray): Rotation matrix from lidar to ego in shape (3, 3). e2g_t (np.ndarray): Translation from ego to global in shape (1, 3). e2g_r_mat (np.ndarray): Rotation matrix from ego to global in shape (3, 3). sensor_type (str, optional): Sensor to calibrate. Default: 'lidar'. Returns: sweep (dict): Sweep information after transformation. """ sd_rec = nusc.get("sample_data", sensor_token) cs_record = nusc.get( "calibrated_sensor", sd_rec["calibrated_sensor_token"] ) pose_record = nusc.get("ego_pose", sd_rec["ego_pose_token"]) data_path = str(nusc.get_sample_data_path(sd_rec["token"])) if os.getcwd() in data_path: # path from lyftdataset is absolute path data_path = data_path.split(f"{os.getcwd()}/")[-1] # relative path sweep = { "data_path": data_path, "type": sensor_type, "sample_data_token": sd_rec["token"], "sensor2ego_translation": cs_record["translation"], "sensor2ego_rotation": cs_record["rotation"], "ego2global_translation": pose_record["translation"], "ego2global_rotation": pose_record["rotation"], "timestamp": sd_rec["timestamp"], } l2e_r_s = sweep["sensor2ego_rotation"] l2e_t_s = sweep["sensor2ego_translation"] e2g_r_s = sweep["ego2global_rotation"] e2g_t_s = sweep["ego2global_translation"] # obtain the RT from sensor to Top LiDAR # sweep->ego->global->ego'->lidar l2e_r_s_mat = Quaternion(l2e_r_s).rotation_matrix e2g_r_s_mat = Quaternion(e2g_r_s).rotation_matrix R = (l2e_r_s_mat.T @ e2g_r_s_mat.T) @ ( np.linalg.inv(e2g_r_mat).T @ np.linalg.inv(l2e_r_mat).T ) T = (l2e_t_s @ e2g_r_s_mat.T + e2g_t_s) @ ( np.linalg.inv(e2g_r_mat).T @ np.linalg.inv(l2e_r_mat).T ) T -= ( e2g_t @ (np.linalg.inv(e2g_r_mat).T @ np.linalg.inv(l2e_r_mat).T) + l2e_t @ np.linalg.inv(l2e_r_mat).T ) sweep["sensor2lidar_rotation"] = R.T # points @ R.T + T sweep["sensor2lidar_translation"] = T return sweep if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(description="nuscenes converter") parser.add_argument("--root_path", type=str, default="./data/nuscenes") parser.add_argument("--info_prefix", type=str, default="nuscenes") parser.add_argument("--version", type=str, default="v1.0-trainval,v1.0-test") parser.add_argument("--max_sweeps", type=int, default=10) args = parser.parse_args() versions = args.version.split(",") for version in versions: create_nuscenes_infos( args.root_path, args.info_prefix, version=version, max_sweeps=args.max_sweeps, )