# Quick Start ### Set up a new virtual environment ```bash virtualenv mm_sparse4d --python=python3.8 source mm_sparse4d/bin/activate ``` ### Install packpages using pip3 ```bash sparse4d_path="path/to/sparse4d" cd ${sparse4d_path} pip3 install --upgrade pip pip3 install -r requirement.txt ``` ### Compile the deformable_aggregation CUDA op ```bash cd projects/mmdet3d_plugin/ops python3 setup.py develop cd ../../../ ``` ### Prepare the data Download the [NuScenes dataset](https://www.nuscenes.org/nuscenes#download) and create symbolic links. ```bash cd ${sparse4d_path} mkdir data ln -s path/to/nuscenes ./data/nuscenes ``` Pack the meta-information and labels of the dataset, and generate the required .pkl files. ```bash pkl_path="data/nuscenes_anno_pkls" mkdir -p ${pkl_path} python3 tools/nuscenes_converter.py --version v1.0-mini --info_prefix ${pkl_path}/nuscenes-mini python3 tools/nuscenes_converter.py --version v1.0-trainval,v1.0-test --info_prefix ${pkl_path}/nuscenes ``` ### Generate anchors by K-means ```bash python3 tools/anchor_generator.py --ann_file ${pkl_path}/nuscenes_infos_train.pkl ``` ### Download pre-trained weights Download the required backbone [pre-trained weights](https://download.pytorch.org/models/resnet50-19c8e357.pth). ```bash mkdir ckpt wget https://download.pytorch.org/models/resnet50-19c8e357.pth -O ckpt/resnet50-19c8e357.pth ``` ### Commence training and testing ```bash # train bash local_train.sh sparse4dv3_temporal_r50_1x8_bs6_256x704 # test bash local_test.sh sparse4dv3_temporal_r50_1x8_bs6_256x704 path/to/checkpoint ``` For inference-related guidelines, please refer to the [tutorial/tutorial.ipynb](../tutorial/tutorial.ipynb).