_base_ = ['../../../mmdetection3d/configs/_base_/datasets/nus-3d.py', '../../../mmdetection3d/configs/_base_/default_runtime.py'] plugin = True plugin_dir = 'projects/mmdet3d_plugin/' point_cloud_range = [-51.2, -51.2, -5.0, 51.2, 51.2, 3.0] # For nuScenes we usually do 10-class detection class_names = [ 'car', 'truck', 'construction_vehicle', 'bus', 'trailer', 'barrier', 'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone' ] data_config = { 'cams': [ 'CAM_FRONT_LEFT', 'CAM_FRONT', 'CAM_FRONT_RIGHT', 'CAM_BACK_LEFT', 'CAM_BACK', 'CAM_BACK_RIGHT' ], 'Ncams': 6, 'input_size': (256, 704), 'src_size': (900, 1600), # Augmentation 'resize': (-0.06, 0.11), 'rot': (-5.4, 5.4), 'flip': True, 'crop_h': (0.0, 0.0), 'resize_test': 0.00, } grid_config = { 'x': [-40, 40, 0.4], 'y': [-40, 40, 0.4], 'z': [-1, 5.4, 6.4], 'depth': [1.0, 45.0, 0.5], } voxel_size = [0.1, 0.1, 0.2] numC_Trans = 80 multi_adj_frame_id_cfg = (1, 16+1, 1) model = dict( type='BEVDepth4DOCC', num_adj=multi_adj_frame_id_cfg[1]-1, img_backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(2, 3), frozen_stages=-1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=False, with_cp=True, style='pytorch', pretrained='torchvision://resnet50', ), img_neck=dict( type='CustomFPN', in_channels=[1024, 2048], out_channels=512, num_outs=1, start_level=0, out_ids=[0]), img_view_transformer=dict( type='LSSViewTransformerBEVDepth', grid_config=grid_config, input_size=data_config['input_size'], in_channels=512, out_channels=numC_Trans, loss_depth_weight=1, depthnet_cfg=dict(use_dcn=False, aspp_mid_channels=96), downsample=16), pre_process=dict( type='CustomResNet', numC_input=numC_Trans, num_layer=[1, ], num_channels=[numC_Trans, ], stride=[1, ], backbone_output_ids=[0, ]), img_bev_encoder_backbone=dict( type='CustomResNet', numC_input=numC_Trans * (len(range(*multi_adj_frame_id_cfg))+1), num_channels=[numC_Trans * 2, numC_Trans * 4, numC_Trans * 8]), img_bev_encoder_neck=dict( type='FPN_LSS', in_channels=numC_Trans * 8 + numC_Trans * 2, out_channels=256), occ_head=dict( type='BEVOCCHead2D_V2', in_dim=256, out_dim=256, Dz=16, use_mask=False, num_classes=18, use_predicter=True, class_balance=True, loss_occ=dict( type='CustomFocalLoss', use_sigmoid=True, loss_weight=1.0 ), ) ) # Data dataset_type = 'NuScenesDatasetOccpancy' data_root = 'data/nuscenes/' file_client_args = dict(backend='disk') bda_aug_conf = dict( rot_lim=(-0., 0.), scale_lim=(1., 1.), flip_dx_ratio=0.5, flip_dy_ratio=0.5 ) train_pipeline = [ dict( type='PrepareImageInputs', is_train=True, data_config=data_config, sequential=True), dict( type='LoadAnnotationsBEVDepth', bda_aug_conf=bda_aug_conf, classes=class_names, is_train=True), dict(type='LoadOccGTFromFile'), dict( type='LoadPointsFromFile', coord_type='LIDAR', load_dim=5, use_dim=5, file_client_args=file_client_args), dict(type='PointToMultiViewDepth', downsample=1, grid_config=grid_config), dict(type='DefaultFormatBundle3D', class_names=class_names), dict( type='Collect3D', keys=['img_inputs', 'gt_depth', 'voxel_semantics', 'mask_lidar', 'mask_camera']) ] test_pipeline = [ dict(type='PrepareImageInputs', data_config=data_config, sequential=True), dict( type='LoadAnnotationsBEVDepth', bda_aug_conf=bda_aug_conf, classes=class_names, is_train=False), dict( type='LoadPointsFromFile', coord_type='LIDAR', load_dim=5, use_dim=5, file_client_args=file_client_args), dict( type='MultiScaleFlipAug3D', img_scale=(1333, 800), pts_scale_ratio=1, flip=False, transforms=[ dict( type='DefaultFormatBundle3D', class_names=class_names, with_label=False), dict(type='Collect3D', keys=['points', 'img_inputs']) ]) ] input_modality = dict( use_lidar=False, use_camera=True, use_radar=False, use_map=False, use_external=False) share_data_config = dict( type=dataset_type, data_root=data_root, classes=class_names, modality=input_modality, stereo=False, filter_empty_gt=False, img_info_prototype='bevdet4d', multi_adj_frame_id_cfg=multi_adj_frame_id_cfg, ) test_data_config = dict( pipeline=test_pipeline, ann_file=data_root + 'bevdetv2-nuscenes_infos_val.pkl') data = dict( samples_per_gpu=4, workers_per_gpu=4, train=dict( data_root=data_root, ann_file=data_root + 'bevdetv2-nuscenes_infos_train.pkl', pipeline=train_pipeline, classes=class_names, test_mode=False, use_valid_flag=True, # we use box_type_3d='LiDAR' in kitti and nuscenes dataset # and box_type_3d='Depth' in sunrgbd and scannet dataset. box_type_3d='LiDAR'), val=test_data_config, test=test_data_config) for key in ['val', 'train', 'test']: data[key].update(share_data_config) # Optimizer optimizer = dict(type='AdamW', lr=1e-4, weight_decay=1e-2) optimizer_config = dict(grad_clip=dict(max_norm=5, norm_type=2)) lr_config = dict( policy='step', warmup='linear', warmup_iters=200, warmup_ratio=0.001, step=[24, ]) runner = dict(type='EpochBasedRunner', max_epochs=24) custom_hooks = [ dict( type='MEGVIIEMAHook', init_updates=10560, priority='NORMAL', ), ] load_from = "ckpts/bevdet-r50-4d-depth-cbgs.pth" # fp16 = dict(loss_scale='dynamic') evaluation = dict(interval=1, start=20, pipeline=test_pipeline) checkpoint_config = dict(interval=1, max_keep_ckpts=5) # use_mask = False # ===> per class IoU of 6019 samples: # ===> others - IoU = 11.94 # ===> barrier - IoU = 44.84 # ===> bicycle - IoU = 26.66 # ===> bus - IoU = 41.53 # ===> car - IoU = 44.42 # ===> construction_vehicle - IoU = 20.79 # ===> motorcycle - IoU = 26.96 # ===> pedestrian - IoU = 25.98 # ===> traffic_cone - IoU = 29.25 # ===> trailer - IoU = 24.24 # ===> truck - IoU = 32.28 # ===> driveable_surface - IoU = 60.5 # ===> other_flat - IoU = 33.07 # ===> sidewalk - IoU = 37.01 # ===> terrain - IoU = 33.54 # ===> manmade - IoU = 21.75 # ===> vegetation - IoU = 21.58 # ===> mIoU of 6019 samples: 31.55 # {'mIoU': array([0.119, 0.448, 0.267, 0.415, 0.444, 0.208, 0.27 , 0.26 , 0.293, # 0.242, 0.323, 0.605, 0.331, 0.37 , 0.335, 0.217, 0.216, 0.839])} # +----------------------+----------+----------+----------+ # | Class Names | RayIoU@1 | RayIoU@2 | RayIoU@4 | # +----------------------+----------+----------+----------+ # | others | 0.110 | 0.118 | 0.119 | # | barrier | 0.444 | 0.484 | 0.499 | # | bicycle | 0.278 | 0.311 | 0.319 | # | bus | 0.537 | 0.635 | 0.691 | # | car | 0.512 | 0.585 | 0.611 | # | construction_vehicle | 0.153 | 0.218 | 0.238 | # | motorcycle | 0.228 | 0.310 | 0.330 | # | pedestrian | 0.338 | 0.387 | 0.401 | # | traffic_cone | 0.342 | 0.362 | 0.370 | # | trailer | 0.209 | 0.293 | 0.368 | # | truck | 0.422 | 0.511 | 0.555 | # | driveable_surface | 0.570 | 0.653 | 0.742 | # | other_flat | 0.301 | 0.340 | 0.375 | # | sidewalk | 0.266 | 0.319 | 0.370 | # | terrain | 0.261 | 0.334 | 0.400 | # | manmade | 0.360 | 0.435 | 0.485 | # | vegetation | 0.244 | 0.354 | 0.442 | # +----------------------+----------+----------+----------+ # | MEAN | 0.328 | 0.391 | 0.430 | # +----------------------+----------+----------+----------+ # {'RayIoU': 0.38313147213727416, 'RayIoU@1': 0.3279517851047602, 'RayIoU@2': 0.3911038935232673, 'RayIoU@4': 0.4303387377837949}