# Copyright (c) OpenMMLab. All rights reserved. import copy import platform import random from functools import partial import numpy as np from mmcv.parallel import collate from mmcv.runner import get_dist_info from mmcv.utils import Registry, build_from_cfg from torch.utils.data import DataLoader from mmdet.datasets.samplers import GroupSampler from projects.mmdet3d_plugin.datasets.samplers.group_sampler import DistributedGroupSampler from projects.mmdet3d_plugin.datasets.samplers.distributed_sampler import DistributedSampler from projects.mmdet3d_plugin.datasets.samplers.sampler import build_sampler # import torch def build_dataloader(dataset, samples_per_gpu, workers_per_gpu, num_gpus=1, dist=True, shuffle=True, seed=None, shuffler_sampler=None, nonshuffler_sampler=None, **kwargs): """Build PyTorch DataLoader. In distributed training, each GPU/process has a dataloader. In non-distributed training, there is only one dataloader for all GPUs. Args: dataset (Dataset): A PyTorch dataset. samples_per_gpu (int): Number of training samples on each GPU, i.e., batch size of each GPU. workers_per_gpu (int): How many subprocesses to use for data loading for each GPU. num_gpus (int): Number of GPUs. Only used in non-distributed training. dist (bool): Distributed training/test or not. Default: True. shuffle (bool): Whether to shuffle the data at every epoch. Default: True. kwargs: any keyword argument to be used to initialize DataLoader Returns: DataLoader: A PyTorch dataloader. """ rank, world_size = get_dist_info() if dist: # DistributedGroupSampler will definitely shuffle the data to satisfy # that images on each GPU are in the same group if shuffle: sampler = build_sampler(shuffler_sampler if shuffler_sampler is not None else dict(type='DistributedGroupSampler'), dict( dataset=dataset, samples_per_gpu=samples_per_gpu, num_replicas=world_size, rank=rank, seed=seed) ) else: sampler = build_sampler(nonshuffler_sampler if nonshuffler_sampler is not None else dict(type='DistributedSampler'), dict( dataset=dataset, num_replicas=world_size, rank=rank, shuffle=shuffle, seed=seed) ) batch_size = samples_per_gpu num_workers = workers_per_gpu else: # assert False, 'not support in bevformer' print('WARNING!!!!, Only can be used for obtain inference speed!!!!') sampler = GroupSampler(dataset, samples_per_gpu) if shuffle else None batch_size = num_gpus * samples_per_gpu num_workers = num_gpus * workers_per_gpu init_fn = partial( worker_init_fn, num_workers=num_workers, rank=rank, seed=seed) if seed is not None else None data_loader = DataLoader( dataset, batch_size=batch_size, sampler=sampler, num_workers=num_workers, collate_fn=partial(collate, samples_per_gpu=samples_per_gpu), pin_memory=False, worker_init_fn=init_fn, persistent_workers=(num_workers > 0), **kwargs) # if to_channels_last: # original_collate_fn = data_loader.collate_fn # def channels_last_collate(batch): # data = original_collate_fn(batch) # print("===============================channels_last=================================================") # if isinstance(data, dict): # if 'img' in data and isinstance(data['img'], torch.Tensor): # data['img'] = data['img'].contiguous(memory_format=torch.channels_last) # elif isinstance(data, list): # for item in data: # if 'img' in item and isinstance(item['img'], torch.Tensor): # item['img'] = item['img'].contiguous(memory_format=torch.channels_last) # return data # data_loader.collate_fn = channels_last_collate return data_loader def worker_init_fn(worker_id, num_workers, rank, seed): # The seed of each worker equals to # num_worker * rank + worker_id + user_seed worker_seed = num_workers * rank + worker_id + seed np.random.seed(worker_seed) random.seed(worker_seed) # Copyright (c) OpenMMLab. All rights reserved. import platform from mmcv.utils import Registry, build_from_cfg from mmdet.datasets import DATASETS from mmdet.datasets.builder import _concat_dataset if platform.system() != 'Windows': # https://github.com/pytorch/pytorch/issues/973 import resource rlimit = resource.getrlimit(resource.RLIMIT_NOFILE) base_soft_limit = rlimit[0] hard_limit = rlimit[1] soft_limit = min(max(4096, base_soft_limit), hard_limit) resource.setrlimit(resource.RLIMIT_NOFILE, (soft_limit, hard_limit)) OBJECTSAMPLERS = Registry('Object sampler') def custom_build_dataset(cfg, default_args=None): from mmdet3d.datasets.dataset_wrappers import CBGSDataset from mmdet.datasets.dataset_wrappers import (ClassBalancedDataset, ConcatDataset, RepeatDataset) if isinstance(cfg, (list, tuple)): dataset = ConcatDataset([custom_build_dataset(c, default_args) for c in cfg]) elif cfg['type'] == 'ConcatDataset': dataset = ConcatDataset( [custom_build_dataset(c, default_args) for c in cfg['datasets']], cfg.get('separate_eval', True)) elif cfg['type'] == 'RepeatDataset': dataset = RepeatDataset( custom_build_dataset(cfg['dataset'], default_args), cfg['times']) elif cfg['type'] == 'ClassBalancedDataset': dataset = ClassBalancedDataset( custom_build_dataset(cfg['dataset'], default_args), cfg['oversample_thr']) elif cfg['type'] == 'CBGSDataset': dataset = CBGSDataset(custom_build_dataset(cfg['dataset'], default_args)) elif isinstance(cfg.get('ann_file'), (list, tuple)): dataset = _concat_dataset(cfg, default_args) else: dataset = build_from_cfg(cfg, DATASETS, default_args) return dataset