# dataset settings # D5 in the config name means the whole dataset is divided into 5 folds # We only use one fold for efficient experiments dataset_type = 'CustomWaymoDataset' data_root = 'data/waymo/kitti_format/' file_client_args = dict(backend='disk') # Uncomment the following if use ceph or other file clients. # See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient # for more details. # file_client_args = dict( # backend='petrel', path_mapping=dict(data='s3://waymo_data/')) img_norm_cfg = dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False) class_names = ['Car', 'Pedestrian', 'Cyclist'] point_cloud_range = [-74.88, -74.88, -2, 74.88, 74.88, 4] input_modality = dict(use_lidar=False, use_camera=True) db_sampler = dict( data_root=data_root, info_path=data_root + 'waymo_dbinfos_train.pkl', rate=1.0, prepare=dict( filter_by_difficulty=[-1], filter_by_min_points=dict(Car=5, Pedestrian=10, Cyclist=10)), classes=class_names, sample_groups=dict(Car=15, Pedestrian=10, Cyclist=10), points_loader=dict( type='LoadPointsFromFile', coord_type='LIDAR', load_dim=5, use_dim=[0, 1, 2, 3, 4], file_client_args=file_client_args)) train_pipeline = [ dict(type='LoadMultiViewImageFromFiles', to_float32=True), dict(type='PhotoMetricDistortionMultiViewImage'), dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True, with_attr_label=False), dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), dict(type='ObjectNameFilter', classes=class_names), dict(type='NormalizeMultiviewImage', **img_norm_cfg), dict(type='PadMultiViewImage', size_divisor=32), dict(type='DefaultFormatBundle3D', class_names=class_names), dict(type='CustomCollect3D', keys=['gt_bboxes_3d', 'gt_labels_3d', 'img']) ] test_pipeline = [ dict(type='LoadMultiViewImageFromFiles', to_float32=True), dict(type='NormalizeMultiviewImage', **img_norm_cfg), dict(type='PadMultiViewImage', size_divisor=32), dict( type='MultiScaleFlipAug3D', img_scale=(1920, 1280), pts_scale_ratio=1, flip=False, transforms=[ dict( type='DefaultFormatBundle3D', class_names=class_names, with_label=False), dict(type='CustomCollect3D', keys=['img']) ]) ] # construct a pipeline for data and gt loading in show function # please keep its loading function consistent with test_pipeline (e.g. client) data = dict( samples_per_gpu=2, workers_per_gpu=4, train=dict( type='RepeatDataset', times=2, dataset=dict( type=dataset_type, data_root=data_root, ann_file=data_root + 'waymo_infos_train.pkl', split='training', pipeline=train_pipeline, modality=input_modality, classes=class_names, test_mode=False, # we use box_type_3d='LiDAR' in kitti and nuscenes dataset # and box_type_3d='Depth' in sunrgbd and scannet dataset. box_type_3d='LiDAR', # load one frame every five frames load_interval=5)), val=dict( type=dataset_type, data_root=data_root, ann_file=data_root + 'waymo_infos_val.pkl', split='training', pipeline=test_pipeline, modality=input_modality, classes=class_names, test_mode=True, box_type_3d='LiDAR'), test=dict( type=dataset_type, data_root=data_root, ann_file=data_root + 'waymo_infos_val.pkl', split='training', pipeline=test_pipeline, modality=input_modality, classes=class_names, test_mode=True, box_type_3d='LiDAR')) evaluation = dict(interval=24, pipeline=test_pipeline)