import torch from diffusers.models.embeddings import TimestepEmbedding from lightx2v.utils.envs import * from .utils import guidance_scale_embedding, rope_params, sinusoidal_embedding_1d class WanPreInfer: def __init__(self, config): assert (config["dim"] % config["num_heads"]) == 0 and (config["dim"] // config["num_heads"]) % 2 == 0 self.config = config d = config["dim"] // config["num_heads"] self.clean_cuda_cache = config.get("clean_cuda_cache", False) self.task = config["task"] self.freqs = torch.cat( [ rope_params(1024, d - 4 * (d // 6)), rope_params(1024, 2 * (d // 6)), rope_params(1024, 2 * (d // 6)), ], dim=1, ).cuda() self.freq_dim = config["freq_dim"] self.dim = config["dim"] self.text_len = config["text_len"] self.enable_dynamic_cfg = config.get("enable_dynamic_cfg", False) self.cfg_scale = config.get("cfg_scale", 4.0) def set_scheduler(self, scheduler): self.scheduler = scheduler @torch.compile(disable=not CHECK_ENABLE_GRAPH_MODE()) def infer(self, weights, inputs, positive, kv_start=0, kv_end=0): x = self.scheduler.latents if self.scheduler.flag_df: t = self.scheduler.df_timesteps[self.scheduler.step_index].unsqueeze(0) assert t.dim() == 2 # df推理模型timestep是二维 else: timestep = self.scheduler.timesteps[self.scheduler.step_index] t = torch.stack([timestep]) if hasattr(self.scheduler, "mask"): t = (self.scheduler.mask[0][:, ::2, ::2] * t).flatten() if positive: context = inputs["text_encoder_output"]["context"] else: context = inputs["text_encoder_output"]["context_null"] if self.task == "i2v": if self.config.get("use_image_encoder", True): clip_fea = inputs["image_encoder_output"]["clip_encoder_out"] if self.config.get("changing_resolution", False): image_encoder = inputs["image_encoder_output"]["vae_encoder_out"][self.scheduler.changing_resolution_index] else: image_encoder = inputs["image_encoder_output"]["vae_encoder_out"] if image_encoder is not None: frame_seq_length = (image_encoder.size(2) // 2) * (image_encoder.size(3) // 2) if kv_end - kv_start >= frame_seq_length: # 如果是CausalVid, image_encoder取片段 idx_s = kv_start // frame_seq_length idx_e = kv_end // frame_seq_length image_encoder = image_encoder[:, idx_s:idx_e, :, :] y = image_encoder x = torch.cat([x, y], dim=0) # embeddings x = weights.patch_embedding.apply(x.unsqueeze(0)) grid_sizes = torch.tensor(x.shape[2:], dtype=torch.long).unsqueeze(0) x = x.flatten(2).transpose(1, 2).contiguous() seq_lens = torch.tensor(x.size(1), dtype=torch.long).cuda().unsqueeze(0) embed = sinusoidal_embedding_1d(self.freq_dim, t.flatten()) if self.enable_dynamic_cfg: s = torch.tensor([self.cfg_scale], dtype=torch.float32).to(x.device) cfg_embed = guidance_scale_embedding(s, embedding_dim=256, cfg_range=(1.0, 6.0), target_range=1000.0, dtype=torch.float32).type_as(x) cfg_embed = weights.cfg_cond_proj_1.apply(cfg_embed) cfg_embed = torch.nn.functional.silu(cfg_embed) cfg_embed = weights.cfg_cond_proj_2.apply(cfg_embed) embed = embed + cfg_embed if GET_DTYPE() != "BF16": embed = weights.time_embedding_0.apply(embed.float()) else: embed = weights.time_embedding_0.apply(embed) embed = torch.nn.functional.silu(embed) embed = weights.time_embedding_2.apply(embed) embed0 = torch.nn.functional.silu(embed) embed0 = weights.time_projection_1.apply(embed0).unflatten(1, (6, self.dim)) if self.scheduler.flag_df: b, f = t.shape assert b == len(x) # batch_size == 1 embed = embed.view(b, f, 1, 1, self.dim) embed0 = embed0.view(b, f, 1, 1, 6, self.dim) embed = embed.repeat(1, 1, grid_sizes[0][1], grid_sizes[0][2], 1).flatten(1, 3) embed0 = embed0.repeat(1, 1, grid_sizes[0][1], grid_sizes[0][2], 1, 1).flatten(1, 3) embed0 = embed0.transpose(1, 2).contiguous() # text embeddings stacked = torch.stack([torch.cat([u, u.new_zeros(self.text_len - u.size(0), u.size(1))]) for u in context]) if GET_DTYPE() != "BF16": out = weights.text_embedding_0.apply(stacked.squeeze(0).float()) else: out = weights.text_embedding_0.apply(stacked.squeeze(0)) out = torch.nn.functional.gelu(out, approximate="tanh") context = weights.text_embedding_2.apply(out) if self.clean_cuda_cache: del out, stacked torch.cuda.empty_cache() if self.task == "i2v" and self.config.get("use_image_encoder", True): context_clip = weights.proj_0.apply(clip_fea) if self.clean_cuda_cache: del clip_fea torch.cuda.empty_cache() context_clip = weights.proj_1.apply(context_clip) context_clip = torch.nn.functional.gelu(context_clip, approximate="none") if self.clean_cuda_cache: torch.cuda.empty_cache() context_clip = weights.proj_3.apply(context_clip) context_clip = weights.proj_4.apply(context_clip) context = torch.concat([context_clip, context], dim=0) if self.clean_cuda_cache: if self.config.get("use_image_encoder", True): del context_clip torch.cuda.empty_cache() return ( embed, grid_sizes, (x.squeeze(0), embed0.squeeze(0), seq_lens, self.freqs, context), )