from abc import ABCMeta, abstractmethod import torch from loguru import logger from lightx2v.utils.envs import * from lightx2v.utils.quant_utils import FloatQuantizer, IntegerQuantizer from lightx2v.utils.registry_factory import MM_WEIGHT_REGISTER try: from vllm import _custom_ops as ops except ImportError: ops = None try: import sgl_kernel except ImportError: sgl_kernel = None try: import q8_kernels.functional as Q8F except ImportError: Q8F = None try: import deep_gemm except ImportError: deep_gemm = None try: from torchao.quantization.utils import quant_int8_per_token_matmul, quantize_activation_per_token_absmax except ModuleNotFoundError: quant_int8_per_token_matmul, quantize_activation_per_token_absmax = None, None class MMWeightTemplate(metaclass=ABCMeta): def __init__(self, weight_name, bias_name, lazy_load=False, lazy_load_file=None): self.weight_name = weight_name self.bias_name = bias_name self.lazy_load = lazy_load self.lazy_load_file = lazy_load_file self.config = {} @abstractmethod def load(self, weight_dict): pass @abstractmethod def apply(self, input_tensor): pass def set_config(self, config={}): self.config = config def to_cuda(self, non_blocking=False): self.weight = self.weight.cuda(non_blocking=non_blocking) if hasattr(self, "weight_scale"): self.weight_scale = self.weight_scale.cuda(non_blocking=non_blocking) if hasattr(self, "bias") and self.bias is not None: self.bias = self.bias.cuda(non_blocking=non_blocking) def to_cpu(self, non_blocking=False): if hasattr(self, "pinned_weight"): self.weight = self.pinned_weight.copy_(self.weight, non_blocking=non_blocking).cpu() if hasattr(self, "weight_scale_name"): self.weight_scale = self.pinned_weight_scale.copy_(self.weight_scale, non_blocking=non_blocking).cpu() if self.bias is not None: self.bias = self.pinned_bias.copy_(self.bias, non_blocking=non_blocking).cpu() else: self.weight = self.weight.to("cpu", non_blocking=non_blocking) if hasattr(self, "weight_scale"): self.weight_scale = self.weight_scale.to("cpu", non_blocking=non_blocking) if hasattr(self, "bias") and self.bias is not None: self.bias = self.bias.to("cpu", non_blocking=non_blocking) @MM_WEIGHT_REGISTER("Default") class MMWeight(MMWeightTemplate): def __init__(self, weight_name, bias_name, lazy_load=False, lazy_load_file=None): super().__init__(weight_name, bias_name, lazy_load, lazy_load_file) def load(self, weight_dict): self.weight = weight_dict[self.weight_name].t() self.pinned_weight = torch.empty(self.weight.shape, pin_memory=True, dtype=self.weight.dtype) self.bias = weight_dict[self.bias_name] if self.bias_name is not None else None self.pinned_bias = torch.empty(self.bias.shape, pin_memory=True, dtype=self.bias.dtype) if self.bias is not None else None def apply(self, input_tensor): shape = (input_tensor.shape[0], self.weight.shape[1]) dtype = input_tensor.dtype device = input_tensor.device output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False) if self.bias is None: return torch.mm(input_tensor, self.weight, out=output_tensor) return torch.addmm(self.bias, input_tensor, self.weight, out=output_tensor) def state_dict(self, destination=None): if destination is None: destination = {} destination[self.weight_name] = self.weight.cpu().detach().clone().t().contiguous() if hasattr(self, "bias") and self.bias is not None: destination[self.bias_name] = self.bias.cpu().detach().clone() return destination @MM_WEIGHT_REGISTER("Default-Force-FP32") class MMWeightForceFP32(MMWeight): def __init__(self, weight_name, bias_name, lazy_load=False, lazy_load_file=None): super().__init__(weight_name, bias_name, lazy_load, lazy_load_file) def load(self, weight_dict): super().load(weight_dict) self.weight = self.weight.to(torch.float32) if hasattr(self, "bias") and self.bias is not None: self.bias = self.bias.to(torch.float32) class MMWeightQuantTemplate(MMWeightTemplate): def __init__(self, weight_name, bias_name, lazy_load=False, lazy_load_file=None): super().__init__(weight_name, bias_name, lazy_load, lazy_load_file) self.weight_scale_name = self.weight_name.removesuffix(".weight") + ".weight_scale" self.load_func = None self.weight_need_transpose = True self.act_quant_func = None self.lazy_load = lazy_load self.lazy_load_file = lazy_load_file # ========================= # weight load functions # ========================= def load_from_disk(self): if not torch._dynamo.is_compiling(): self.weight = self.lazy_load_file.get_tensor(self.weight_name).pin_memory() self.weight_scale = self.lazy_load_file.get_tensor(self.weight_scale_name).float().pin_memory() if self.bias_name is not None: self.bias = self.lazy_load_file.get_tensor(self.bias_name).to(torch.bfloat16).pin_memory() else: self.weight = self.lazy_load_file.get_tensor(self.weight_name) self.weight_scale = self.lazy_load_file.get_tensor(self.weight_scale_name).float() if self.bias_name is not None: self.bias = self.lazy_load_file.get_tensor(self.bias_name).to(torch.bfloat16) if self.weight_need_transpose: self.weight = self.weight.t() def load(self, weight_dict): if not self.lazy_load: self.load_func(weight_dict) if self.weight_need_transpose: self.weight = self.weight.t() self.pinned_weight = self.pinned_weight.t() def clear(self): attrs = ["weight", "weight_scale", "bias", "pinned_weight", "pinned_weight_scale", "pinned_bias"] for attr in attrs: if hasattr(self, attr): delattr(self, attr) setattr(self, attr, None) def _calculate_size(self): if self.bias is not None: return self.weight.numel() * self.weight.element_size() + self.weight_scale.numel() * self.weight_scale.element_size() + self.bias.numel() * self.bias.element_size() return self.weight.numel() * self.weight.element_size() + self.weight_scale.numel() * self.weight_scale.element_size() def load_quantized(self, weight_dict): self.weight = weight_dict[self.weight_name] self.weight_scale = weight_dict[self.weight_scale_name].float() self.pinned_weight = torch.empty(self.weight.shape, pin_memory=True, dtype=self.weight.dtype) self.pinned_weight_scale = torch.empty(self.weight_scale.shape, pin_memory=True, dtype=self.weight_scale.dtype) def load_fp8_perchannel_sym(self, weight_dict): if self.config.get("weight_auto_quant", False): self.weight = weight_dict[self.weight_name].to(torch.float32) w_quantizer = FloatQuantizer("e4m3", True, "per_channel") self.weight, self.weight_scale, _ = w_quantizer.real_quant_tensor(self.weight) self.weight = self.weight.to(torch.float8_e4m3fn) self.weight_scale = self.weight_scale.to(torch.float32) self.pinned_weight = torch.empty(self.weight.shape, pin_memory=True, dtype=self.weight.dtype) self.pinned_weight_scale = torch.empty(self.weight_scale.shape, pin_memory=True, dtype=self.weight_scale.dtype) else: self.load_quantized(weight_dict) if self.bias_name is not None: self.bias = weight_dict[self.bias_name] self.pinned_bias = torch.empty(self.bias.shape, pin_memory=True, dtype=self.bias.dtype) else: self.bias = None def load_int8_perchannel_sym(self, weight_dict): if self.config.get("weight_auto_quant", False): self.weight = weight_dict[self.weight_name].to(torch.float32) w_quantizer = IntegerQuantizer(8, True, "per_channel") self.weight, self.weight_scale, _ = w_quantizer.real_quant_tensor(self.weight) self.weight = self.weight.to(torch.int8) self.weight_scale = self.weight_scale.to(torch.float32) self.pinned_weight = torch.empty(self.weight.shape, pin_memory=True, dtype=self.weight.dtype) self.pinned_weight_scale = torch.empty(self.weight_scale.shape, pin_memory=True, dtype=self.weight_scale.dtype) else: self.load_quantized(weight_dict) if self.bias_name is not None: self.bias = weight_dict[self.bias_name] self.pinned_bias = torch.empty(self.bias.shape, pin_memory=True, dtype=self.bias.dtype) else: self.bias = None def load_fp8_perblock128_sym(self, weight_dict): if self.config.get("weight_auto_quant", False): self.weight = weight_dict[self.weight_name] self.weight, self.weight_scale = self.per_block_cast_to_fp8(self.weight) self.pinned_weight = torch.empty(self.weight.shape, pin_memory=True, dtype=self.weight.dtype) self.pinned_weight_scale = torch.empty(self.weight_scale.shape, pin_memory=True, dtype=self.weight_scale.dtype) else: self.load_quantized(weight_dict) if self.bias_name is not None: self.bias = weight_dict[self.bias_name] self.pinned_bias = torch.empty(self.bias.shape, pin_memory=True, dtype=self.bias.dtype) else: self.bias = None def per_block_cast_to_fp8(self, x): assert x.dim() == 2 m, n = x.shape x_padded = torch.zeros( (deep_gemm.ceil_div(m, 128) * 128, deep_gemm.ceil_div(n, 128) * 128), dtype=x.dtype, device=x.device, ) x_padded[:m, :n] = x x_view = x_padded.view(-1, 128, x_padded.size(1) // 128, 128) x_amax = x_view.abs().float().amax(dim=(1, 3), keepdim=True).clamp(1e-4) x_scaled = (x_view * (448.0 / x_amax)).to(torch.float8_e4m3fn) return x_scaled.view_as(x_padded)[:m, :n].contiguous(), (x_amax / 448.0).view(x_view.size(0), x_view.size(2)) # ========================= # act quant kernels # ========================= def act_quant_int8_perchannel_sym_torchao(self, x): input_tensor_quant, input_tensor_scale = quantize_activation_per_token_absmax(x) return input_tensor_quant, input_tensor_scale def act_quant_fp8_perchannel_sym_vllm(self, x): input_tensor_quant, input_tensor_scale = ops.scaled_fp8_quant(x, None, scale_ub=None, use_per_token_if_dynamic=True) return input_tensor_quant, input_tensor_scale def act_quant_fp8_perchannel_sym_sgl(self, x): m, k = x.shape input_tensor_quant = torch.empty((m, k), dtype=torch.float8_e4m3fn, device="cuda", requires_grad=False) input_tensor_scale = torch.empty((m, 1), dtype=torch.float32, device="cuda", requires_grad=False) sgl_kernel.sgl_per_token_quant_fp8(x, input_tensor_quant, input_tensor_scale) return input_tensor_quant, input_tensor_scale def act_quant_int8_perchannel_sym_vllm(self, x): input_tensor_quant, input_tensor_scale, _ = ops.scaled_int8_quant(x, scale=None, azp=None, symmetric=True) return input_tensor_quant, input_tensor_scale def act_quant_fp8_perchannelgroup128_sym_deepgemm(self, x): assert x.dim() == 2 and x.size(1) % 128 == 0 m, n = x.shape x_view = x.view(m, -1, 128) x_amax = x_view.abs().float().amax(dim=2).view(m, -1).clamp(1e-4) return (x_view * (448.0 / x_amax.unsqueeze(2))).to(torch.float8_e4m3fn).view(m, n), (x_amax / 448.0).view(m, -1) def act_quant_fp8_perchannelgroup128_sym_sgl(self, x): m, k = x.shape input_tensor_quant = torch.empty((m, k), dtype=torch.float8_e4m3fn, device="cuda", requires_grad=False) input_tensor_scale = torch.empty((m, k // 128), dtype=torch.float32, device="cuda", requires_grad=False) sgl_kernel.sgl_per_token_group_quant_fp8( x, input_tensor_quant, input_tensor_scale, group_size=128, eps=1e-10, fp8_min=-448.0, fp8_max=448.0, ) return input_tensor_quant, input_tensor_scale def state_dict(self, destination=None): if destination is None: destination = {} if self.weight_need_transpose: destination[self.weight_name] = self.weight.cpu().detach().clone().t().contiguous() else: destination[self.weight_name] = self.weight.cpu().detach().clone().contiguous() if hasattr(self, "bias") and self.bias is not None: destination[self.bias_name] = self.bias.cpu().detach().clone() if hasattr(self, "weight_scale"): destination[self.weight_name.removesuffix(".weight") + ".weight_scale"] = self.weight_scale.cpu().detach().clone() return destination @MM_WEIGHT_REGISTER("W-fp8-channel-sym-A-fp8-channel-sym-dynamic-Vllm") class MMWeightWfp8channelAfp8channeldynamicVllm(MMWeightQuantTemplate): """ Name: W-fp8-channel-sym-A-fp8-channel-sym-dynamic-Vllm Quant MM: Weight: fp8 perchannel sym Act: fp8 perchannel dynamic sym Kernel: vllm """ def __init__(self, weight_name, bias_name, lazy_load=False, lazy_load_file=None): super().__init__(weight_name, bias_name, lazy_load, lazy_load_file) self.load_func = self.load_fp8_perchannel_sym self.weight_need_transpose = True self.act_quant_func = self.act_quant_fp8_perchannel_sym_vllm def apply(self, input_tensor): shape = (input_tensor.shape[0], self.weight.shape[1]) dtype = input_tensor.dtype device = input_tensor.device output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False) input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor) torch.ops._C.cutlass_scaled_mm( output_tensor, input_tensor_quant, self.weight, input_tensor_scale, self.weight_scale, self.bias, ) return output_tensor @MM_WEIGHT_REGISTER("W-int8-channel-sym-A-int8-channel-sym-dynamic-Vllm") class MMWeightWint8channelAint8channeldynamicVllm(MMWeightQuantTemplate): """ Name: W-int8-channel-sym-A-int8-channel-sym-dynamic-Vllm Quant MM: Weight: int8 perchannel sym Act: int8 perchannel dynamic sym Kernel: vllm """ def __init__(self, weight_name, bias_name, lazy_load=False, lazy_load_file=None): super().__init__(weight_name, bias_name, lazy_load, lazy_load_file) self.load_func = self.load_int8_perchannel_sym self.weight_need_transpose = True self.act_quant_func = self.act_quant_int8_perchannel_sym_vllm def apply(self, input_tensor): shape = (input_tensor.shape[0], self.weight.shape[1]) dtype = input_tensor.dtype device = input_tensor.device output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False) input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor) torch.ops._C.cutlass_scaled_mm( output_tensor, input_tensor_quant, self.weight, input_tensor_scale, self.weight_scale, self.bias, ) return output_tensor @MM_WEIGHT_REGISTER("W-fp8-channel-sym-A-fp8-channel-sym-dynamic-Q8F") class MMWeightWfp8channelAfp8channeldynamicQ8F(MMWeightQuantTemplate): """ Name: W-fp8-channel-sym-A-fp8-channel-sym-dynamic-Q8F Quant MM: Weight: fp8 perchannel sym Act: fp8 perchannel dynamic sym Kernel: Q8F """ def __init__(self, weight_name, bias_name, lazy_load=False, lazy_load_file=None): super().__init__(weight_name, bias_name, lazy_load, lazy_load_file) self.load_func = self.load_fp8_perchannel_sym self.weight_need_transpose = False self.act_quant_func = self.act_quant_fp8_perchannel_sym_vllm def apply(self, input_tensor): input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor) output_tensor = Q8F.linear.fp8_linear( input_tensor_quant, self.weight, self.bias.float(), input_tensor_scale, self.weight_scale, out_dtype=torch.bfloat16, ) return output_tensor.squeeze(0) @MM_WEIGHT_REGISTER("W-int8-channel-sym-A-int8-channel-sym-dynamic-Q8F") class MMWeightWint8channelAint8channeldynamicQ8F(MMWeightQuantTemplate): """ Name: W-int8-channel-sym-A-int8-channel-sym-dynamic-Q8F Quant MM: Weight: int8 perchannel sym Act: int8 perchannel dynamic sym Kernel: Q8F """ def __init__(self, weight_name, bias_name, lazy_load=False, lazy_load_file=None): super().__init__(weight_name, bias_name, lazy_load, lazy_load_file) self.load_func = self.load_int8_perchannel_sym self.weight_need_transpose = False self.act_quant_func = self.act_quant_int8_perchannel_sym_vllm def apply(self, input_tensor): input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor) output_tensor = Q8F.linear.q8_linear( input_tensor_quant, self.weight, self.bias.float(), input_tensor_scale, self.weight_scale, fuse_gelu=False, out_dtype=torch.bfloat16, ) return output_tensor.squeeze(0) @MM_WEIGHT_REGISTER("W-fp8-block128-sym-A-fp8-channel-group128-sym-dynamic-Deepgemm") class MMWeightWfp8block128Afp8channelgroup128dynamicDeepgemm(MMWeightQuantTemplate): """ Name: W-fp8-block128-sym-A-fp8-channel-group128-sym-dynamic-Deepgemm Quant MM: Weight: fp8 perblock 128x128 sym Act: fp8 perchannel-pergroup group=128 dynamic sym Kernel: Deepgemm Reference: https://github.com/deepseek-ai/DeepGEMM Example: Act(1024, 2048) x Weight(2048, 4096) = Out(1024, 4096) Act : torch.Size([1024, 2048]), torch.float8_e4m3fn Act Scale: torch.Size([1024, 16]), torch.float32 Weight : torch.Size([4096, 2048]), torch.float8_e4m3fn Weight Scale: torch.Size([32, 16]), torch.float32 Out : torch.Size([1024, 4096]), torch.bfloat16 """ def __init__(self, weight_name, bias_name, lazy_load=False, lazy_load_file=None): super().__init__(weight_name, bias_name, lazy_load, lazy_load_file) self.load_func = self.load_fp8_perblock128_sym self.weight_need_transpose = False self.act_quant_func = self.act_quant_fp8_perchannelgroup128_sym_deepgemm def apply(self, input_tensor): shape = (input_tensor.shape[0], self.weight.shape[0]) dtype = input_tensor.dtype device = input_tensor.device output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False) input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor) deep_gemm.gemm_fp8_fp8_bf16_nt( (input_tensor_quant, input_tensor_scale), (self.weight, self.weight_scale), output_tensor, ) if hasattr(self, "bias") and self.bias is not None: output_tensor.add_(self.bias) return output_tensor @MM_WEIGHT_REGISTER("W-fp8-block128-sym-A-fp8-channel-group128-sym-dynamic-Deepgemm-ActSgl") class MMWeightWfp8block128Afp8channelgroup128dynamicDeepgemmActSgl(MMWeightQuantTemplate): """ Name: W-fp8-block128-sym-A-fp8-channel-group128-sym-dynamic-Deepgemm-ActSgl Quant MM: Weight: fp8 perblock 128x128 sym Act: fp8 pertoken-pergroup group=128 dynamic sym Kernel: quant-mm using Deepgemm, act dynamic quant using Sgl-kernel """ def __init__(self, weight_name, bias_name, lazy_load=False, lazy_load_file=None): super().__init__(weight_name, bias_name, lazy_load, lazy_load_file) self.load_func = self.load_fp8_perblock128_sym self.weight_need_transpose = False self.act_quant_func = self.act_quant_fp8_perchannelgroup128_sym_sgl def apply(self, input_tensor): shape = (input_tensor.shape[0], self.weight.shape[0]) dtype = input_tensor.dtype device = input_tensor.device output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False) input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor) deep_gemm.gemm_fp8_fp8_bf16_nt( (input_tensor_quant, input_tensor_scale), (self.weight, self.weight_scale), output_tensor, ) if hasattr(self, "bias") and self.bias is not None: output_tensor.add_(self.bias) return output_tensor @MM_WEIGHT_REGISTER("W-fp8-channel-sym-A-fp8-channel-sym-dynamic-Vllm-ActSgl") class MMWeightWfp8channelAfp8channeldynamicVllmActSgl(MMWeightQuantTemplate): """ Name: W-fp8-channel-sym-A-fp8-channel-sym-dynamic-Vllm-ActSgl Quant MM: Weight: fp8 perchannel sym Act: fp8 perchannel dynamic sym Kernel: quant-mm using vllm, act dynamic quant using Sgl-kernel """ def __init__(self, weight_name, bias_name, lazy_load=False, lazy_load_file=None): super().__init__(weight_name, bias_name, lazy_load, lazy_load_file) self.load_func = self.load_fp8_perchannel_sym self.weight_need_transpose = True self.act_quant_func = self.act_quant_fp8_perchannel_sym_sgl def apply(self, input_tensor): shape = (input_tensor.shape[0], self.weight.shape[1]) dtype = input_tensor.dtype device = input_tensor.device output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False) input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor) torch.ops._C.cutlass_scaled_mm( output_tensor, input_tensor_quant, self.weight, input_tensor_scale, self.weight_scale, self.bias, ) return output_tensor @MM_WEIGHT_REGISTER("W-fp8-channel-sym-A-fp8-channel-sym-dynamic-Sgl-ActVllm") class MMWeightWfp8channelAfp8channeldynamicSglActVllm(MMWeightQuantTemplate): """ Name: W-fp8-channel-sym-A-fp8-channel-sym-dynamic-Sgl-ActVllm Quant MM: Weight: fp8 perchannel sym Act: fp8 perchannel dynamic sym Kernel: quant-mm using Sgl-kernel, act dynamic quant using vllm """ def __init__(self, weight_name, bias_name, lazy_load=False, lazy_load_file=None): super().__init__(weight_name, bias_name, lazy_load, lazy_load_file) self.load_func = self.load_fp8_perchannel_sym self.weight_need_transpose = True self.act_quant_func = self.act_quant_fp8_perchannel_sym_vllm def apply(self, input_tensor): input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor) output_tensor = sgl_kernel.fp8_scaled_mm( input_tensor_quant, self.weight, input_tensor_scale, self.weight_scale, torch.bfloat16, bias=self.bias, ) return output_tensor @MM_WEIGHT_REGISTER("W-fp8-channel-sym-A-fp8-channel-sym-dynamic-Sgl") class MMWeightWfp8channelAfp8channeldynamicSgl(MMWeightQuantTemplate): """ Name: W-fp8-channel-sym-A-fp8-channel-sym-dynamic-Sgl Quant MM: Weight: fp8 perchannel sym Act: fp8 perchannel dynamic sym Kernel: Sgl-kernel """ def __init__(self, weight_name, bias_name, lazy_load=False, lazy_load_file=None): super().__init__(weight_name, bias_name, lazy_load, lazy_load_file) self.load_func = self.load_fp8_perchannel_sym self.weight_need_transpose = True self.act_quant_func = self.act_quant_fp8_perchannel_sym_sgl def apply(self, input_tensor): input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor) output_tensor = sgl_kernel.fp8_scaled_mm( input_tensor_quant, self.weight, input_tensor_scale, self.weight_scale, torch.bfloat16, bias=self.bias, ) return output_tensor @MM_WEIGHT_REGISTER("W-int8-channel-sym-A-int8-channel-sym-dynamic-Sgl-ActVllm") class MMWeightWint8channelAint8channeldynamicSglActVllm(MMWeightQuantTemplate): """ Name: W-int8-channel-sym-A-int8-channel-sym-dynamic-Sgl-ActVllm Quant MM: Weight: int8 perchannel sym Act: int8 perchannel dynamic sym Kernel: quant-mm using Sgl-kernel, act dynamic quant using vllm """ def __init__(self, weight_name, bias_name, lazy_load=False, lazy_load_file=None): super().__init__(weight_name, bias_name, lazy_load, lazy_load_file) self.load_func = self.load_int8_perchannel_sym self.weight_need_transpose = True self.act_quant_func = self.act_quant_int8_perchannel_sym_vllm def apply(self, input_tensor): shape = (input_tensor.shape[0], self.weight.shape[1]) dtype = input_tensor.dtype device = input_tensor.device output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False) input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor) output_tensor = sgl_kernel.int8_scaled_mm( input_tensor_quant, self.weight, input_tensor_scale, self.weight_scale, torch.bfloat16, self.bias, ) return output_tensor @MM_WEIGHT_REGISTER("W-int8-channel-sym-A-int8-channel-sym-dynamic-Torchao") class MMWeightWint8channelAint8channeldynamicSglActVllm(MMWeightQuantTemplate): """ Name: W-int8-channel-sym-A-int8-channel-sym-dynamic-Torchao Quant MM: Weight: int8 perchannel sym Act: int8 perchannel dynamic sym Kernel: Torchao """ def __init__(self, weight_name, bias_name, lazy_load=False, lazy_load_file=None): super().__init__(weight_name, bias_name, lazy_load, lazy_load_file) self.load_func = self.load_int8_perchannel_sym self.weight_need_transpose = True self.act_quant_func = self.act_quant_int8_perchannel_sym_torchao def apply(self, input_tensor): input_tensor = input_tensor input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor) output_tensor = quant_int8_per_token_matmul(input_tensor_quant, input_tensor_scale, self.weight, self.weight_scale.t().float(), output_dtype=torch.bfloat16) if self.bias is not None: output_tensor = output_tensor + self.bias return output_tensor if __name__ == "__main__": weight_dict = { "xx.weight": torch.randn(8192, 4096).to(torch.float8_e4m3fn), "xx.bias": torch.randn(8192).to(torch.bfloat16), "xx.weight_scale": torch.randn(8192, 1).to(torch.float32), } mm_weight = MM_WEIGHT_REGISTER["W-fp8-channel-sym-A-fp8-channel-sym-dynamic-Vllm"]("xx.weight", "xx.bias") mm_weight.set_config({"weight_auto_quant": False}) mm_weight.load(weight_dict) input_tensor = torch.randn(1024, 4096).to(torch.bfloat16).cuda() output_tensor = mm_weight.apply(input_tensor) logger.info(output_tensor.shape) weight_dict = { "xx.weight": torch.randn(8192, 4096), "xx.bias": torch.randn(8192).to(torch.bfloat16), } mm_weight = MM_WEIGHT_REGISTER["W-fp8-channel-sym-A-fp8-channel-sym-dynamic-Vllm"]("xx.weight", "xx.bias") mm_weight.set_config({"weight_auto_quant": True}) mm_weight.load(weight_dict) input_tensor = torch.randn(1024, 4096).to(torch.bfloat16).cuda() output_tensor = mm_weight.apply(input_tensor) logger.info(output_tensor.shape) weight_dict = { "xx.weight": torch.randn(8192, 4096), "xx.bias": torch.randn(8192).to(torch.bfloat16), } mm_weight = MM_WEIGHT_REGISTER["W-int8-channel-sym-A-int8-channel-sym-dynamic-Vllm"]("xx.weight", "xx.bias") mm_weight.set_config({"weight_auto_quant": True}) mm_weight.load(weight_dict) input_tensor = torch.randn(1024, 4096).to(torch.bfloat16).cuda() output_tensor = mm_weight.apply(input_tensor) logger.info(output_tensor.shape)