from abc import ABCMeta, abstractmethod import torch from lightx2v.utils.registry_factory import CONV2D_WEIGHT_REGISTER class Conv2dWeightTemplate(metaclass=ABCMeta): def __init__(self, weight_name, bias_name, stride, padding, dilation, groups): self.weight_name = weight_name self.bias_name = bias_name self.stride = stride self.padding = padding self.dilation = dilation self.groups = groups self.config = {} @abstractmethod def load(self, weight_dict): pass @abstractmethod def apply(self, input_tensor): pass def set_config(self, config=None): if config is not None: self.config = config @CONV2D_WEIGHT_REGISTER("Default") class Conv2dWeight(Conv2dWeightTemplate): def __init__(self, weight_name, bias_name, stride=1, padding=0, dilation=1, groups=1): super().__init__(weight_name, bias_name, stride, padding, dilation, groups) def load(self, weight_dict): self.weight = weight_dict[self.weight_name].cuda() self.bias = weight_dict[self.bias_name].cuda() if self.bias_name is not None else None def apply(self, input_tensor): input_tensor = torch.nn.functional.conv2d(input_tensor, weight=self.weight, bias=self.bias, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups) return input_tensor def to_cpu(self, non_blocking=False): self.weight = self.weight.cpu(non_blocking=non_blocking) if self.bias is not None: self.bias = self.bias.cpu(non_blocking=non_blocking) def to_cuda(self, non_blocking=False): self.weight = self.weight.cuda(non_blocking=non_blocking) if self.bias is not None: self.bias = self.bias.cuda(non_blocking=non_blocking) def state_dict(self, destination=None): if destination is None: destination = {} destination[self.weight_name] = self.weight.cpu().detach().clone() if self.bias is not None: destination[self.bias_name] = self.bias.cpu().detach().clone() return destination def clear(self): attrs = ["weight", "bias", "pinned_weight", "pinned_bias"] for attr in attrs: if hasattr(self, attr): delattr(self, attr) setattr(self, attr, None)