# LightX2V: Light Video Generation Inference Framework
logo [![License](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](https://opensource.org/licenses/Apache-2.0) [![Ask DeepWiki](https://deepwiki.com/badge.svg)](https://deepwiki.com/ModelTC/lightx2v) [![Doc](https://img.shields.io/badge/docs-English-99cc2)](https://lightx2v-en.readthedocs.io/en/latest) [![Doc](https://img.shields.io/badge/文档-中文-99cc2)](https://lightx2v-zhcn.readthedocs.io/zh-cn/latest) [![Docker](https://badgen.net/badge/icon/docker?icon=docker&label)](https://hub.docker.com/r/lightx2v/lightx2v/tags)
-------------------------------------------------------------------------------- **LightX2V** is a lightweight video generation inference framework designed to provide an inference tool that leverages multiple advanced video generation inference techniques. As a unified inference platform, this framework supports various generation tasks such as text-to-video (T2V) and image-to-video (I2V) across different models. **X2V means transforming different input modalities (such as text or images) to video output.** ## How to Start Please refer to our documentation: [English Docs](https://lightx2v-en.readthedocs.io/en/latest/) | [中文文档](https://lightx2v-zhcn.readthedocs.io/zh-cn/latest/) ## Supported Model List ✅ [HunyuanVideo-T2V](https://huggingface.co/tencent/HunyuanVideo) ✅ [HunyuanVideo-I2V](https://huggingface.co/tencent/HunyuanVideo-I2V) ✅ [Wan2.1-T2V](https://huggingface.co/Wan-AI/Wan2.1-T2V-1.3B) ✅ [Wan2.1-I2V](https://huggingface.co/Wan-AI/Wan2.1-I2V-14B-480P) ✅ [Wan2.1-T2V-StepDistill-CfgDistill](https://huggingface.co/lightx2v/Wan2.1-T2V-14B-StepDistill-CfgDistill) ✅ [Wan2.1-T2V-CausVid](https://huggingface.co/lightx2v/Wan2.1-T2V-14B-CausVid) ✅ [SkyReels-V2-DF](https://huggingface.co/Skywork/SkyReels-V2-DF-14B-540P) ✅ [CogVideoX1.5-5B-T2V](https://huggingface.co/THUDM/CogVideoX1.5-5B) ## Contributing Guidelines We have prepared a `pre-commit` hook to enforce consistent code formatting across the project. 1. Install the required dependencies: ```shell pip install ruff pre-commit ``` 2. Then, run the following command before commit: ```shell pre-commit run --all-files ``` Thank you for your contributions! ## Acknowledgments We built the code for this repository by referencing the code repositories involved in all the models mentioned above.