import math import torch from lightx2v.utils.envs import * class WanPostInfer: def __init__(self, config): self.out_dim = config["out_dim"] self.patch_size = (1, 2, 2) self.clean_cuda_cache = config.get("clean_cuda_cache", False) def set_scheduler(self, scheduler): self.scheduler = scheduler def infer(self, weights, x, e, grid_sizes): if e.dim() == 2: modulation = weights.head_modulation.tensor # 1, 2, dim e = (modulation + e.unsqueeze(1)).chunk(2, dim=1) elif e.dim() == 3: # For Diffustion forcing modulation = weights.head_modulation.tensor.unsqueeze(2) # 1, 2, seq, dim e = (modulation + e.unsqueeze(1)).chunk(2, dim=1) e = [ei.squeeze(1) for ei in e] x = weights.norm.apply(x) if GET_DTYPE() != "BF16": x = x.float() x.mul_(1 + e[1].squeeze(0)).add_(e[0].squeeze(0)) if GET_DTYPE() != "BF16": x = x.to(torch.bfloat16) x = weights.head.apply(x) x = self.unpatchify(x, grid_sizes) if self.clean_cuda_cache: del e, grid_sizes torch.cuda.empty_cache() return [u.float() for u in x] def unpatchify(self, x, grid_sizes): x = x.unsqueeze(0) c = self.out_dim out = [] for u, v in zip(x, grid_sizes.tolist()): u = u[: math.prod(v)].view(*v, *self.patch_size, c) u = torch.einsum("fhwpqrc->cfphqwr", u) u = u.reshape(c, *[i * j for i, j in zip(v, self.patch_size)]) out.append(u) return out