# Benchmark --- ## H200 (~140GB VRAM) **Software Environment:** - Python 3.11 - PyTorch 2.7.1+cu128 - SageAttention 2.2.0 - vLLM 0.9.2 - sgl-kernel 0.1.8 ### 480P 5s Video **Test Configuration:** - **Model**: [Wan2.1-I2V-14B-480P-Lightx2v](https://huggingface.co/lightx2v/Wan2.1-I2V-14B-480P-Lightx2v) - **Parameters**: infer_steps=40, seed=42, enable_cfg=True #### Performance Comparison | Configuration | Model Load Time(s) | Inference Time(s) | GPU Memory(GB) | Speedup | Video Effect | |:-------------|:------------------:|:-----------------:|:--------------:|:-------:|:------------:| | Wan2.1 Official(baseline) | 68.26 | 366.04 | 71 | 1.0x | | | **LightX2V_1** | 37.28 | 249.54 | 53 | **1.47x** | | | **LightX2V_2** | 37.24 | 216.16 | 50 | **1.69x** | | | **LightX2V_3** | 23.62 | 190.73 | 35 | **1.92x** | | | **LightX2V_4** | 23.62 | 107.19 | 35 | **3.41x** | | ### 720P 5s Video **Test Configuration:** - **Model**: [Wan2.1-I2V-14B-720P-Lightx2v](https://huggingface.co/lightx2v/Wan2.1-I2V-14B-720P-Lightx2v) - **Parameters**: infer_steps=40, seed=42, enable_cfg=True *Coming soon...* --- ## RTX 4090 (~24GB VRAM) ### 480P 5s Video *Coming soon...* ### 720P 5s Video *Coming soon...* --- ## Table Descriptions - **Wan2.1 Official(baseline)**: Baseline implementation based on [Wan2.1 official repository](https://github.com/Wan-Video/Wan2.1) - **LightX2V_1**: Uses SageAttention2 to replace native attention mechanism with DIT BF16+FP32 mixed precision (sensitive layers), improving computational efficiency while maintaining precision - **LightX2V_2**: Unified BF16 precision computation to further reduce memory usage and computational overhead while maintaining generation quality - **LightX2V_3**: Quantization optimization introducing FP8 quantization technology to significantly reduce computational precision requirements, combined with Tiling VAE technology to optimize memory usage - **LightX2V_4**: Ultimate optimization adding TeaCache (teacache_thresh=0.2) caching reuse technology on top of LightX2V_3 to achieve maximum acceleration by intelligently skipping redundant computations