# Local Windows Deployment Guide This document provides detailed instructions for deploying LightX2V locally on Windows environments. ## System Requirements Before getting started, please ensure your system meets the following requirements: - **Operating System**: Windows 10/11 - **Graphics Card**: NVIDIA GPU (with CUDA support) - **VRAM**: At least 8GB VRAM - **Memory**: At least 16GB RAM - **Storage**: 20GB+ available disk space - **Environment Manager**: Anaconda or Miniconda installed - **Network Tools**: Git (for cloning repositories) ## Deployment Steps ### Step 1: Check CUDA Version First, verify your GPU driver and CUDA version by running the following command in Command Prompt: ```bash nvidia-smi ``` Note the **CUDA Version** displayed in the output, as you'll need to match this version during subsequent installations. ### Step 2: Create Python Environment Create an isolated conda environment, we recommend using Python 3.12: ```bash # Create new environment (using Python 3.12 as example) conda create -n lightx2v python=3.12 -y # Activate environment conda activate lightx2v ``` > 💡 **Tip**: Python 3.10 or higher is recommended for optimal compatibility. ### Step 3: Install PyTorch Framework #### Method 1: Download Official Wheel Packages (Recommended) 1. Visit the [PyTorch Official Wheel Download Page](https://download.pytorch.org/whl/torch/) 2. Select the appropriate wheel package, ensuring you match: - **Python Version**: Must match your environment (cp312 means Python 3.12) - **CUDA Version**: Must match your GPU driver - **Platform**: Choose Windows version (win_amd64) **Example for Python 3.12 + PyTorch 2.6 + CUDA 12.4:** ``` torch-2.6.0+cu124-cp312-cp312-win_amd64.whl ``` After downloading, install the packages: ```bash # Install PyTorch (replace with actual file path) pip install torch-2.6.0+cu124-cp312-cp312-win_amd64.whl # Install accompanying vision and audio packages pip install torchvision==0.21.0 torchaudio==2.6.0 ``` #### Method 2: Direct pip Installation If you prefer direct installation, use the following command: ```bash # Example: CUDA 12.4 version pip install torch==2.6.0+cu124 torchvision==0.21.0+cu124 torchaudio==2.6.0+cu124 --index-url https://download.pytorch.org/whl/cu124 ``` ### Step 4: Install Windows Version vLLM Download the corresponding wheel package from the [vllm-windows releases page](https://github.com/SystemPanic/vllm-windows/releases). **Version Matching Requirements:** - Python version must match (e.g., cp312) - PyTorch version must match - CUDA version must match **Recommended v0.9.1 Installation:** ```bash pip install vllm-0.9.1+cu124-cp312-cp312-win_amd64.whl ``` > ⚠️ **Note**: Please select the appropriate wheel package filename based on your specific environment. ### Step 5: Install Attention Mechanism Operators You can choose to install either Flash Attention 2 or SageAttention 2. **SageAttention 2 is strongly recommended**. #### Option A: Flash Attention 2 ```bash pip install flash-attn==2.7.2.post1 ``` #### Option B: SageAttention 2 (Recommended) **Download Sources:** - [Windows Version 1](https://github.com/woct0rdho/SageAttention/releases) - [Windows Version 2](https://github.com/sdbds/SageAttention-for-windows/releases) **Version Selection Guidelines:** - Python version must match - PyTorch version must match - **CUDA version can be flexible** (SageAttention doesn't use breaking APIs yet) **Recommended Installation Version:** ```bash pip install sageattention-2.1.1+cu126torch2.6.0-cp312-cp312-win_amd64.whl ``` **Verify SageAttention Installation:** After installation, we recommend running a verification script to ensure proper functionality: > 📝 **Testing**: You can also run the [official test script](https://github.com/woct0rdho/SageAttention/blob/main/tests/test_sageattn.py) for more detailed functionality verification. ### Step 6: Get LightX2V Project Code Clone the LightX2V project from GitHub and install Windows-specific dependencies: ```bash # Clone project code git clone https://github.com/ModelTC/LightX2V.git # Enter project directory cd LightX2V # Install Windows-specific dependencies pip install -r requirements_win.txt ``` > 🔍 **Note**: We use `requirements_win.txt` instead of the standard `requirements.txt` because Windows environments may require specific package versions or additional dependencies. ## Troubleshooting ### 1. CUDA Version Mismatch **Symptoms**: CUDA-related errors occur **Solutions**: - Verify GPU driver supports required CUDA version - Re-download matching wheel packages - Use `nvidia-smi` to check maximum supported CUDA version ### 2. Dependency Conflicts **Symptoms**: Package version conflicts or import errors **Solutions**: - Remove existing environment: `conda env remove -n lightx2v` - Recreate environment and install dependencies strictly by version requirements - Use virtual environments to isolate dependencies for different projects ### 3. Wheel Package Download Issues **Symptoms**: Slow download speeds or connection failures **Solutions**: - Use download tools or browser for direct downloads - Look for domestic mirror sources - Check network connections and firewall settings ## Next Steps After completing the environment setup, you can: - 📚 Check the [Quick Start Guide](../getting_started/quickstart.md) (skip environment installation steps) - 🌐 Use the [Gradio Web Interface](./deploy_gradio.md) for visual operations (skip environment installation steps) ## Version Compatibility Reference | Component | Recommended Version | |-----------|-------------------| | Python | 3.12 | | PyTorch | 2.6.0+cu124 | | vLLM | 0.9.1+cu124 | | SageAttention | 2.1.1+cu126torch2.6.0 | | CUDA | 12.4+ | --- 💡 **Pro Tip**: If you encounter other issues, we recommend first checking whether all component versions match properly, as most problems stem from version incompatibilities.