import gc import torch import torch.distributed as dist from lightx2v.utils.profiler import ProfilingContext4Debug, ProfilingContext from lightx2v.utils.utils import save_videos_grid, cache_video from lightx2v.utils.envs import * from loguru import logger class DefaultRunner: def __init__(self, config): self.config = config self.model, self.text_encoders, self.vae_model, self.image_encoder = self.load_model() def set_inputs(self, inputs): self.config["prompt"] = inputs.get("prompt", "") self.config["negative_prompt"] = inputs.get("negative_prompt", "") self.config["image_path"] = inputs.get("image_path", "") self.config["save_video_path"] = inputs.get("save_video_path", "") def run_input_encoder(self): image_encoder_output = None if self.config["task"] == "i2v": with ProfilingContext("Run Img Encoder"): image_encoder_output = self.run_image_encoder(self.config, self.image_encoder, self.vae_model) with ProfilingContext("Run Text Encoder"): text_encoder_output = self.run_text_encoder(self.config["prompt"], self.text_encoders, self.config, image_encoder_output) self.set_target_shape() self.inputs = {"text_encoder_output": text_encoder_output, "image_encoder_output": image_encoder_output} gc.collect() torch.cuda.empty_cache() def run(self): for step_index in range(self.model.scheduler.infer_steps): logger.info(f"==> step_index: {step_index + 1} / {self.model.scheduler.infer_steps}") with ProfilingContext4Debug("step_pre"): self.model.scheduler.step_pre(step_index=step_index) with ProfilingContext4Debug("infer"): self.model.infer(self.inputs) with ProfilingContext4Debug("step_post"): self.model.scheduler.step_post() return self.model.scheduler.latents, self.model.scheduler.generator def run_step(self, step_index=0): self.init_scheduler() self.run_input_encoder() self.model.scheduler.prepare(self.inputs["image_encoder_output"]) self.model.scheduler.step_pre(step_index=step_index) self.model.infer(self.inputs) self.model.scheduler.step_post() def end_run(self): if self.config.cpu_offload: self.model.scheduler.clear() del self.inputs, self.model.scheduler, self.model, self.text_encoders torch.cuda.empty_cache() @ProfilingContext("Run VAE") def run_vae(self, latents, generator): images = self.vae_model.decode(latents, generator=generator, config=self.config) return images @ProfilingContext("Save video") def save_video(self, images): if not self.config.parallel_attn_type or (self.config.parallel_attn_type and dist.get_rank() == 0): if self.config.model_cls in ["wan2.1", "wan2.1_causal", "wan2.1_skyreels_v2_df"]: cache_video(tensor=images, save_file=self.config.save_video_path, fps=16, nrow=1, normalize=True, value_range=(-1, 1)) else: save_videos_grid(images, self.config.save_video_path, fps=24) def run_pipeline(self): self.init_scheduler() self.run_input_encoder() self.model.scheduler.prepare(self.inputs["image_encoder_output"]) latents, generator = self.run() self.end_run() images = self.run_vae(latents, generator) self.save_video(images)