# 模型转换工具 A powerful utility for converting model weights between different formats and performing quantization tasks. ## Diffusers Facilitates mutual conversion between diffusers architecture and lightx2v architecture ### Lightx2v->Diffusers ```bash python converter.py \ --source /Path/To/Wan-AI/Wan2.1-I2V-14B-480P \ --output /Path/To/Wan2.1-I2V-14B-480P-Diffusers \ --direction forward \ --save_by_block ``` ### Diffusers->Lightx2v ```bash python converter.py \ --source /Path/To/Wan-AI/Wan2.1-I2V-14B-480P-Diffusers \ --output /Path/To/Wan2.1-I2V-14B-480P \ --direction backward \ --save_by_block ``` ## Quantization This tool supports converting fp32/fp16/bf16 model weights to INT8、FP8 type. ### Wan DIT ```bash python converter.py \ --source /Path/To/Wan-AI/Wan2.1-I2V-14B-480P/ \ --output /Path/To/output \ --output_ext .safetensors \ --output_name wan_int8 \ --linear_dtype torch.int8 \ --model_type wan_dit \ --quantized \ --save_by_block ``` ```bash python converter.py \ --source /Path/To/Wan-AI/Wan2.1-I2V-14B-480P/ \ --output /Path/To/output \ --output_ext .safetensors \ --output_name wan_fp8 \ --linear_dtype torch.float8_e4m3fn \ --model_type wan_dit \ --quantized \ --save_by_block ``` ### Wan DiT + LoRA ```bash python converter.py \ --source /Path/To/Wan-AI/Wan2.1-T2V-14B/ \ --output /Path/To/output \ --output_ext .safetensors \ --output_name wan_int8 \ --linear_dtype torch.int8 \ --model_type wan_dit \ --lora_path /Path/To/LoRA1/ /Path/To/LoRA2/ \ --lora_alpha 1.0 1.0 \ --quantized \ --save_by_block ``` ### Hunyuan DIT ```bash python converter.py \ --source /Path/To/hunyuan/lightx2v_format/i2v/ \ --output /Path/To/output \ --output_ext ..safetensors \ --output_name hunyuan_int8 \ --linear_dtype torch.int8 \ --model_type hunyuan_dit \ --quantized ``` ```bash python converter.py \ --source /Path/To/hunyuan/lightx2v_format/i2v/ \ --output /Path/To/output \ --output_ext .safetensors \ --output_name hunyuan_fp8 \ --linear_dtype torch.float8_e4m3fn \ --model_type hunyuan_dit \ --quantized ``` ### Wan T5EncoderModel ```bash python converter.py \ --source /Path/To/Wan-AI/Wan2.1-I2V-14B-480P/models_t5_umt5-xxl-enc-bf16.pth \ --output /Path/To/output \ --output_ext .pth\ --output_name models_t5_umt5-xxl-enc-int8 \ --linear_dtype torch.int8 \ --non_linear_dtype torch.bfloat16 \ --model_type wan_t5 \ --quantized ``` ```bash python converter.py \ --source /Path/To/Wan-AI/Wan2.1-I2V-14B-480P/models_t5_umt5-xxl-enc-bf16.pth \ --output /Path/To/Wan-AI/Wan2.1-I2V-14B-480P/fp8 \ --output_ext .pth\ --output_name models_t5_umt5-xxl-enc-fp8 \ --linear_dtype torch.float8_e4m3fn \ --non_linear_dtype torch.bfloat16 \ --model_type wan_t5 \ --quantized ``` ### Wan CLIPModel ```bash python converter.py \ --source /Path/To/Wan-AI/Wan2.1-I2V-14B-480P/models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth \ --output /Path/To/output \ --output_ext .pth \ --output_name clip-int8 \ --linear_dtype torch.int8 \ --non_linear_dtype torch.float16 \ --model_type wan_clip \ --quantized ``` ```bash python converter.py \ --source /Path/To/Wan-AI/Wan2.1-I2V-14B-480P/models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth \ --output ./output \ --output_ext .pth \ --output_name clip-fp8 \ --linear_dtype torch.float8_e4m3fn \ --non_linear_dtype torch.float16 \ --model_type wan_clip \ --quantized ```