import torch import torch.distributed as dist from lightx2v.utils.registry_factory import ATTN_WEIGHT_REGISTER from .template import AttnWeightTemplate @ATTN_WEIGHT_REGISTER("ulysses") class UlyssesAttnWeight(AttnWeightTemplate): def __init__(self): self.config = {} def apply(self, q, k, v, img_qkv_len, cu_seqlens_qkv, attention_module=None, seq_p_group=None, model_cls=None): """ 执行 Ulysses 注意力机制,结合图像和文本的查询、键和值。 参数: q (torch.Tensor): 查询张量,形状为 [shard_seqlen, heads, hidden_dims] k (torch.Tensor): 键张量,形状为 [shard_seqlen, heads, hidden_dims] v (torch.Tensor): 值张量,形状为 [shard_seqlen, heads, hidden_dims] img_qkv_len (int): 图像查询、键和值的长度 cu_seqlens_qkv (torch.Tensor): 累积序列长度,包含文本和图像的长度信息 attention_type (str): 注意力类型,默认为 "flash_attn2" 返回: torch.Tensor: 计算得到的注意力结果 """ # 获取当前进程的排名和全局进程数 world_size = dist.get_world_size(seq_p_group) cur_rank = dist.get_rank(seq_p_group) # 获取序列长度和文本相关的长度 seq_len = q.shape[0] if len(cu_seqlens_qkv) == 3: txt_qkv_len = cu_seqlens_qkv[1] - img_qkv_len # 文本查询、键和值的长度 txt_mask_len = cu_seqlens_qkv[2] - img_qkv_len # 文本掩码长度 elif len(cu_seqlens_qkv) == 2: txt_qkv_len = cu_seqlens_qkv[1] - img_qkv_len # 文本查询、键和值的长度 txt_mask_len = None # 获取查询张量的头数和隐藏维度 _, heads, hidden_dims = q.shape shard_heads = heads // world_size # 每个进程处理的头数 shard_seqlen = img_qkv_len # 每个进程处理的序列长度 # 分割图像和文本的查询、键和值 img_q, img_k, img_v = q[:img_qkv_len, :, :].contiguous(), k[:img_qkv_len, :, :].contiguous(), v[:img_qkv_len, :, :].contiguous() txt_q, txt_k, txt_v = q[img_qkv_len:, :, :].contiguous(), k[img_qkv_len:, :, :].contiguous(), v[img_qkv_len:, :, :].contiguous() # 计算每个进程应该持有的头数分片 num_heads = img_q.shape[1] shard_heads = num_heads // world_size # 将 QKV 按头维度切分成 N 份,每份大小为 D/N q_shards = [img_q[:, i * shard_heads : (i + 1) * shard_heads, :].contiguous() for i in range(world_size)] k_shards = [img_k[:, i * shard_heads : (i + 1) * shard_heads, :].contiguous() for i in range(world_size)] v_shards = [img_v[:, i * shard_heads : (i + 1) * shard_heads, :].contiguous() for i in range(world_size)] # 准备接收缓冲区 gathered_q_shards = [None] * world_size gathered_k_shards = [None] * world_size gathered_v_shards = [None] * world_size for target_rank in range(world_size): if target_rank != cur_rank: gathered_q_shards[target_rank] = torch.empty_like(q_shards[target_rank]) gathered_k_shards[target_rank] = torch.empty_like(k_shards[target_rank]) gathered_v_shards[target_rank] = torch.empty_like(v_shards[target_rank]) else: gathered_q_shards[cur_rank] = q_shards[cur_rank] gathered_k_shards[cur_rank] = k_shards[cur_rank] gathered_v_shards[cur_rank] = v_shards[cur_rank] # 异步发起通信后同步 for target_rank in range(world_size): if target_rank != cur_rank: # 避免死锁: 按 rank 顺序决定发送/接收顺序 if cur_rank < target_rank: sendq_req = dist.isend(q_shards[target_rank], dst=target_rank, group=seq_p_group) sendk_req = dist.isend(k_shards[target_rank], dst=target_rank, group=seq_p_group) sendv_req = dist.isend(v_shards[target_rank], dst=target_rank, group=seq_p_group) recvq_req = dist.irecv(gathered_q_shards[target_rank], src=target_rank, group=seq_p_group) recvk_req = dist.irecv(gathered_k_shards[target_rank], src=target_rank, group=seq_p_group) recvv_req = dist.irecv(gathered_v_shards[target_rank], src=target_rank, group=seq_p_group) else: recvq_req = dist.irecv(gathered_q_shards[target_rank], src=target_rank, group=seq_p_group) recvk_req = dist.irecv(gathered_k_shards[target_rank], src=target_rank, group=seq_p_group) recvv_req = dist.irecv(gathered_v_shards[target_rank], src=target_rank, group=seq_p_group) sendq_req = dist.isend(q_shards[target_rank], dst=target_rank, group=seq_p_group) sendk_req = dist.isend(k_shards[target_rank], dst=target_rank, group=seq_p_group) sendv_req = dist.isend(v_shards[target_rank], dst=target_rank, group=seq_p_group) sendq_req.wait() sendk_req.wait() sendv_req.wait() recvq_req.wait() recvk_req.wait() recvv_req.wait() # 拼接所有分片 (在序列维度上) # 每个 gathered_*_shards[i] 的形状是 (seq_len/N, num_heads/N, head_dim) # 拼接后形状是 (seq_len, num_heads/N, head_dim) img_q = torch.cat(gathered_q_shards, dim=0) img_k = torch.cat(gathered_k_shards, dim=0) img_v = torch.cat(gathered_v_shards, dim=0) # 处理文本的查询、键和值,选择当前进程的头 txt_q = txt_q[:, cur_rank * shard_heads : (cur_rank + 1) * shard_heads, :] txt_k = txt_k[:, cur_rank * shard_heads : (cur_rank + 1) * shard_heads, :] txt_v = txt_v[:, cur_rank * shard_heads : (cur_rank + 1) * shard_heads, :] # 合并图像和文本的查询、键和值 q = torch.cat((img_q, txt_q), dim=0) k = torch.cat((img_k, txt_k), dim=0) v = torch.cat((img_v, txt_v), dim=0) # 初始化累积序列长度张量 cu_seqlens_qkv = torch.zeros([2], dtype=torch.int32, device="cuda") s = txt_qkv_len + img_q.shape[0] # 计算文本和图像的总长度 s1 = s # 当前样本的结束位置 cu_seqlens_qkv[1] = s1 # 设置累积序列长度 if txt_mask_len: s2 = txt_mask_len + img_q.shape[0] # 文本掩码的结束位置 cu_seqlens_qkv = torch.cat(cu_seqlens_qkv, s2) max_seqlen_qkv = img_q.shape[0] + txt_q.shape[0] # 最大序列长度 # 调用注意力函数计算注意力结果 # attn = attention(attention_type=attention_type, q=q, k=k, v=v, cu_seqlens_q=cu_seqlens_qkv, cu_seqlens_kv=cu_seqlens_qkv, max_seqlen_q=max_seqlen_qkv, max_seqlen_kv=max_seqlen_qkv) attn = attention_module.apply(q=q, k=k, v=v, cu_seqlens_q=cu_seqlens_qkv, cu_seqlens_kv=cu_seqlens_qkv, max_seqlen_q=max_seqlen_qkv, max_seqlen_kv=max_seqlen_qkv, model_cls=model_cls) # 分割图像和文本的注意力结果 img_attn, txt_attn = attn[: img_q.shape[0], :], attn[img_q.shape[0] :,] # 收集所有进程的文本注意力结果 gathered_txt_attn = [torch.empty_like(txt_attn) for _ in range(world_size)] dist.all_gather(gathered_txt_attn, txt_attn, group=seq_p_group) img_attn = self._reshape_img_attn(img_attn, world_size, shard_seqlen, shard_heads, hidden_dims, seq_p_group) txt_attn = torch.cat(gathered_txt_attn, dim=1) # 合并所有进程的文本注意力结果 # 合并图像和文本的注意力结果 attn = torch.cat([img_attn, txt_attn], dim=0) return attn # 返回最终的注意力结果 @torch.compiler.disable def _reshape_img_attn(self, img_attn, world_size, shard_seqlen, shard_heads, hidden_dims, seq_p_group): cur_rank = dist.get_rank(seq_p_group) img_attn = img_attn.reshape(world_size * shard_seqlen, shard_heads, hidden_dims) # 重塑图像注意力结果 # 按序列维度切分成 N 份 attn_shards = [img_attn[i * shard_seqlen : (i + 1) * shard_seqlen, :, :].contiguous() for i in range(world_size)] # 准备接收缓冲区 gathered_attn_shards = [None] * world_size for target_rank in range(world_size): if target_rank != cur_rank: gathered_attn_shards[target_rank] = torch.empty_like(attn_shards[target_rank]) else: gathered_attn_shards[cur_rank] = attn_shards[cur_rank] # 异步发起通信后同步 for target_rank in range(world_size): if target_rank != cur_rank: # 避免死锁: 按 rank 顺序决定发送/接收顺序 if cur_rank < target_rank: send_req = dist.isend(attn_shards[target_rank], dst=target_rank, group=seq_p_group) recv_req = dist.irecv(gathered_attn_shards[target_rank], src=target_rank, group=seq_p_group) else: recv_req = dist.irecv(gathered_attn_shards[target_rank], src=target_rank, group=seq_p_group) send_req = dist.isend(attn_shards[target_rank], dst=target_rank, group=seq_p_group) send_req.wait() recv_req.wait() # 拼接所有分片 (在头维度上) img_attn = torch.cat(gathered_attn_shards, dim=1) img_attn = img_attn.reshape(shard_seqlen, -1) # 重塑为 [shard_seqlen, -1] 形状 torch.cuda.synchronize() # 确保CUDA操作完成 return img_attn