# Benchmark --- ## H200 (~140GB VRAM) **Software Environment:** - **Python**: 3.11 - **PyTorch**: 2.7.1+cu128 - **SageAttention**: 2.2.0 - **vLLM**: 0.9.2 - **sgl-kernel**: 0.1.8 ### 480P 5s Video **Test Configuration:** - **Model**: [Wan2.1-I2V-14B-480P-Lightx2v](https://huggingface.co/lightx2v/Wan2.1-I2V-14B-480P-Lightx2v) - **Parameters**: infer_steps=40, seed=42, enable_cfg=True #### Performance Comparison | Configuration | Inference Time(s) | GPU Memory(GB) | Speedup | Video Effect | |:-------------|:-----------------:|:--------------:|:-------:|:------------:| | **Wan2.1 Official** | 366 | 71 | 1.0x | | | **FastVideo** | 292 | 26 | **1.25x** | | | **LightX2V_1** | 250 | 53 | **1.46x** | | | **LightX2V_2** | 216 | 50 | **1.70x** | | | **LightX2V_3** | 191 | 35 | **1.92x** | | | **LightX2V_3-Distill** | 14 | 35 | **🏆 20.85x** | | | **LightX2V_4** | 107 | 35 | **3.41x** | | ### 720P 5s Video **Test Configuration:** - **Model**: [Wan2.1-I2V-14B-720P-Lightx2v](https://huggingface.co/lightx2v/Wan2.1-I2V-14B-720P-Lightx2v) - **Parameters**: infer_steps=40, seed=42, enable_cfg=True #### Performance Comparison | Configuration | Inference Time(s) | GPU Memory(GB) | Speedup | Video Effect | |:-------------|:-----------------:|:--------------:|:-------:|:------------:| | **Wan2.1 Official** | 974 | 81 | 1.0x | | | **FastVideo** | 914 | 40 | **1.07x** | | | **LightX2V_1** | 807 | 65 | **1.21x** | | | **LightX2V_2** | 751 | 57 | **1.30x** | | | **LightX2V_3** | 671 | 43 | **1.45x** | | | **LightX2V_3-Distill** | 44 | 43 | **🏆 22.14x** | | | **LightX2V_4** | 344 | 46 | **2.83x** | | --- ## RTX 4090 (~24GB VRAM) ### 480P 5s Video *Coming soon...* ### 720P 5s Video *Coming soon...* --- ## Configuration Descriptions - **Wan2.1 Official**: Based on [Wan2.1 official repository](https://github.com/Wan-Video/Wan2.1) - **FastVideo**: Based on [FastVideo official repository](https://github.com/hao-ai-lab/FastVideo), using SageAttention backend - **LightX2V_1**: Uses SageAttention2 to replace native attention mechanism, adopts DIT BF16+FP32 (partial sensitive layers) mixed precision computation, improving computational efficiency while maintaining precision - **LightX2V_2**: Unified BF16 precision computation, further reducing memory usage and computational overhead while maintaining generation quality - **LightX2V_3**: Introduces FP8 quantization technology to significantly reduce computational precision requirements, combined with Tiling VAE technology to optimize memory usage - **LightX2V_3-Distill**: Based on LightX2V_3 using 4-step distillation model(`infer_step=4`, `enable_cfg=False`), further reducing inference steps while maintaining generation quality. - **LightX2V_4**: Based on LightX2V_3 with TeaCache(teacache_thresh=0.2) caching reuse technology, achieving acceleration through intelligent redundant computation skipping