Commit f6d4fc85 authored by PengGao's avatar PengGao Committed by GitHub
Browse files

style: add ruff isort (#183)

parent 878f5a48
...@@ -4,10 +4,10 @@ from typing import Optional, Tuple ...@@ -4,10 +4,10 @@ from typing import Optional, Tuple
import numpy as np import numpy as np
import torch import torch
import torch.nn as nn import torch.nn as nn
from diffusers.models.attention_processor import SpatialNorm
from diffusers.utils import BaseOutput, is_torch_version from diffusers.utils import BaseOutput, is_torch_version
from diffusers.utils.torch_utils import randn_tensor from diffusers.utils.torch_utils import randn_tensor
from diffusers.models.attention_processor import SpatialNorm
from .unet_causal_3d_blocks import ( from .unet_causal_3d_blocks import (
CausalConv3d, CausalConv3d,
UNetMidBlockCausal3D, UNetMidBlockCausal3D,
......
...@@ -19,18 +19,16 @@ import numpy as np ...@@ -19,18 +19,16 @@ import numpy as np
import torch import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders.single_file_model import FromOriginalModelMixin from diffusers.loaders.single_file_model import FromOriginalModelMixin
from diffusers.utils import logging
from diffusers.utils.accelerate_utils import apply_forward_hook
from diffusers.models.activations import get_activation from diffusers.models.activations import get_activation
from diffusers.models.autoencoders.vae import DecoderOutput, DiagonalGaussianDistribution
from diffusers.models.downsampling import CogVideoXDownsample3D
from diffusers.models.modeling_outputs import AutoencoderKLOutput from diffusers.models.modeling_outputs import AutoencoderKLOutput
from diffusers.models.modeling_utils import ModelMixin from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.upsampling import CogVideoXUpsample3D from diffusers.models.upsampling import CogVideoXUpsample3D
from diffusers.models.downsampling import CogVideoXDownsample3D from diffusers.utils import logging
from diffusers.models.autoencoders.vae import DecoderOutput, DiagonalGaussianDistribution from diffusers.utils.accelerate_utils import apply_forward_hook
logger = logging.get_logger(__name__) # pylint: disable=invalid-name logger = logging.get_logger(__name__) # pylint: disable=invalid-name
......
import os
import glob import glob
import os
import torch # type: ignore import torch # type: ignore
from safetensors import safe_open # type: ignore
from diffusers.video_processor import VideoProcessor # type: ignore from diffusers.video_processor import VideoProcessor # type: ignore
from safetensors import safe_open # type: ignore
from lightx2v.models.video_encoders.hf.cogvideox.autoencoder_ks_cogvidex import AutoencoderKLCogVideoX from lightx2v.models.video_encoders.hf.cogvideox.autoencoder_ks_cogvidex import AutoencoderKLCogVideoX
......
import gc
import os
from collections import namedtuple
import torch import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
from tqdm.auto import tqdm from tqdm.auto import tqdm
from collections import namedtuple
import gc
import os
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:32,expandable_segments:True" os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:32,expandable_segments:True"
...@@ -266,6 +267,7 @@ class TAEHV(nn.Module): ...@@ -266,6 +267,7 @@ class TAEHV(nn.Module):
def main(): def main():
"""Run TAEHV roundtrip reconstruction on the given video paths.""" """Run TAEHV roundtrip reconstruction on the given video paths."""
import sys import sys
import cv2 # no highly esteemed deed is commemorated here import cv2 # no highly esteemed deed is commemorated here
class VideoTensorReader: class VideoTensorReader:
......
...@@ -3,9 +3,9 @@ import logging ...@@ -3,9 +3,9 @@ import logging
import torch import torch
import torch.cuda.amp as amp import torch.cuda.amp as amp
import torch.distributed as dist
import torch.nn as nn import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
import torch.distributed as dist
from einops import rearrange from einops import rearrange
from loguru import logger from loguru import logger
......
import torch import torch
import torch.nn as nn import torch.nn as nn
from ..tae import TAEHV
from lightx2v.utils.memory_profiler import peak_memory_decorator from lightx2v.utils.memory_profiler import peak_memory_decorator
from ..tae import TAEHV
class DotDict(dict): class DotDict(dict):
__getattr__ = dict.__getitem__ __getattr__ = dict.__getitem__
......
import os import os
import torch import torch
from lightx2v.models.video_encoders.hf.autoencoder_kl_causal_3d.autoencoder_kl_causal_3d import AutoencoderKLCausal3D from lightx2v.models.video_encoders.hf.autoencoder_kl_causal_3d.autoencoder_kl_causal_3d import AutoencoderKLCausal3D
......
...@@ -3,10 +3,10 @@ from pathlib import Path ...@@ -3,10 +3,10 @@ from pathlib import Path
from subprocess import Popen from subprocess import Popen
import numpy as np import numpy as np
import torch
import tensorrt as trt import tensorrt as trt
from cuda import cudart import torch
import torch.nn as nn import torch.nn as nn
from cuda import cudart
from loguru import logger from loguru import logger
from lightx2v.common.backend_infer.trt import common from lightx2v.common.backend_infer.trt import common
......
import asyncio import asyncio
from fastapi import FastAPI, UploadFile, HTTPException, Form, File, APIRouter
from fastapi.responses import StreamingResponse
from loguru import logger
import threading
import gc import gc
import torch import threading
from pathlib import Path
import uuid import uuid
from pathlib import Path
from typing import Optional from typing import Optional
import torch
from fastapi import APIRouter, FastAPI, File, Form, HTTPException, UploadFile
from fastapi.responses import StreamingResponse
from loguru import logger
from .schema import ( from .schema import (
TaskRequest,
TaskResponse,
ServiceStatusResponse, ServiceStatusResponse,
StopTaskResponse, StopTaskResponse,
TaskRequest,
TaskResponse,
) )
from .service import FileService, DistributedInferenceService, VideoGenerationService from .service import DistributedInferenceService, FileService, VideoGenerationService
from .utils import ServiceStatus from .utils import ServiceStatus
......
import os import os
import torch import torch
import torch.distributed as dist import torch.distributed as dist
from loguru import logger from loguru import logger
......
from pydantic import BaseModel, Field
from typing import Optional
from datetime import datetime from datetime import datetime
from typing import Optional
from pydantic import BaseModel, Field
from ..utils.generate_task_id import generate_task_id from ..utils.generate_task_id import generate_task_id
......
...@@ -9,12 +9,11 @@ import httpx ...@@ -9,12 +9,11 @@ import httpx
import torch.multiprocessing as mp import torch.multiprocessing as mp
from loguru import logger from loguru import logger
from ..utils.set_config import set_config
from ..infer import init_runner from ..infer import init_runner
from .utils import ServiceStatus from ..utils.set_config import set_config
from .schema import TaskRequest, TaskResponse
from .distributed_utils import create_distributed_worker from .distributed_utils import create_distributed_worker
from .schema import TaskRequest, TaskResponse
from .utils import ServiceStatus
mp.set_start_method("spawn", force=True) mp.set_start_method("spawn", force=True)
......
import base64
import io
import signal
import sys import sys
import threading
from datetime import datetime
from typing import Optional
import psutil import psutil
import signal import torch
import base64
from PIL import Image from PIL import Image
from loguru import logger from loguru import logger
from typing import Optional
from datetime import datetime
from pydantic import BaseModel from pydantic import BaseModel
import threading
import torch
import io
class ProcessManager: class ProcessManager:
......
import aiofiles
import asyncio import asyncio
from PIL import Image
import io import io
from typing import Union
from pathlib import Path from pathlib import Path
from typing import Union
import aiofiles
from PIL import Image
from loguru import logger from loguru import logger
......
import time
import torch
import asyncio import asyncio
import time
from functools import wraps from functools import wraps
from lightx2v.utils.envs import *
import torch
from loguru import logger from loguru import logger
from lightx2v.utils.envs import *
class _ProfilingContext: class _ProfilingContext:
def __init__(self, name): def __init__(self, name):
......
import argparse import argparse
import torch import torch
from loguru import logger from loguru import logger
from transformers import AutoModelForCausalLM, AutoTokenizer from transformers import AutoModelForCausalLM, AutoTokenizer
from lightx2v.utils.profiler import ProfilingContext4Debug, ProfilingContext
from lightx2v.utils.profiler import ProfilingContext, ProfilingContext4Debug
sys_prompt = """ sys_prompt = """
Transform the short prompt into a detailed video-generation caption using this structure: Transform the short prompt into a detailed video-generation caption using this structure:
......
import base64
import io
import signal
import sys import sys
import threading
from datetime import datetime
from typing import List, Optional
import psutil import psutil
import signal import torch
import base64
from PIL import Image from PIL import Image
from loguru import logger from loguru import logger
from typing import Optional, List
from datetime import datetime
from pydantic import BaseModel from pydantic import BaseModel
import threading
import torch
import io
class ProcessManager: class ProcessManager:
......
import json import json
import os import os
import torch.distributed as dist
from easydict import EasyDict from easydict import EasyDict
from loguru import logger from loguru import logger
import torch.distributed as dist
from torch.distributed.tensor.device_mesh import init_device_mesh from torch.distributed.tensor.device_mesh import init_device_mesh
......
import glob
import os import os
import random import random
import subprocess import subprocess
import glob from typing import Optional
import imageio import imageio
import imageio_ffmpeg as ffmpeg import imageio_ffmpeg as ffmpeg
import numpy as np import numpy as np
import torch import torch
import torchvision import torchvision
from typing import Optional
from einops import rearrange from einops import rearrange
from loguru import logger from loguru import logger
......
[tool.ruff] [tool.ruff]
exclude = [".git", ".mypy_cache", ".ruff_cache", ".venv", "dist"] exclude = [
".git",
".mypy_cache",
".ruff_cache",
".venv",
"dist",
"build",
"__pycache__",
"*.egg-info",
".pytest_cache",
".cluade",
".cursor",
"lightx2v_kernel",
]
target-version = "py311" target-version = "py311"
line-length = 200 line-length = 200
indent-width = 4 indent-width = 4
lint.ignore =["F"]
[tool.ruff.format] [tool.ruff.lint]
line-ending = "lf" extend-select = ["I"]
quote-style = "double" ignore = ["F"]
indent-style = "space"
[tool.ruff.lint.per-file-ignores]
"**/__init__.py" = ["F401"]
"**/lightx2v_kernel/*" = ["F401"]
"**/{cookbook,docs}/*" = ["E402", "F401", "F811", "F841"]
[tool.ruff.lint.isort]
known-first-party = ["lightx2v"]
case-sensitive = true
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment