mm_weight.py 51.8 KB
Newer Older
1
import re
helloyongyang's avatar
helloyongyang committed
2
from abc import ABCMeta, abstractmethod
PengGao's avatar
PengGao committed
3
4

import torch
Dongz's avatar
Dongz committed
5

PengGao's avatar
PengGao committed
6
from lightx2v.utils.envs import *
yihuiwen's avatar
yihuiwen committed
7
8
from lightx2v.utils.ggml_tensor import GGMLTensor
from lightx2v.utils.ggml_tensor import dequantize_tensor as gguf_dequantize_tensor
9
from lightx2v.utils.global_paras import CALIB
PengGao's avatar
PengGao committed
10
11
12
from lightx2v.utils.quant_utils import FloatQuantizer, IntegerQuantizer
from lightx2v.utils.registry_factory import MM_WEIGHT_REGISTER

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
try:
    from lightx2v_kernel.gemm import (
        cutlass_scaled_mxfp4_mm,
        cutlass_scaled_mxfp6_mxfp8_mm,
        cutlass_scaled_mxfp8_mm,
        cutlass_scaled_nvfp4_mm,
        scaled_mxfp4_quant,
        scaled_mxfp6_quant,
        scaled_mxfp8_quant,
        scaled_nvfp4_quant,
    )
except ImportError:
    scaled_nvfp4_quant, cutlass_scaled_nvfp4_mm = None, None
    scaled_mxfp4_quant, cutlass_scaled_mxfp4_mm = None, None
    scaled_mxfp6_quant, cutlass_scaled_mxfp6_mxfp8_mm = None, None
    scaled_mxfp8_quant, cutlass_scaled_mxfp8_mm = None, None

gushiqiao's avatar
gushiqiao committed
30
31
32
33
34
35
36
37
38
39
try:
    from vllm import _custom_ops as ops
except ImportError:
    ops = None

try:
    import sgl_kernel
except ImportError:
    sgl_kernel = None

40
try:
gushiqiao's avatar
gushiqiao committed
41
    from q8_kernels.functional.linear import q8_linear
42
except ImportError:
gushiqiao's avatar
gushiqiao committed
43
44
45
46
47
48
    q8_linear = None

try:
    from q8_kernels.functional.linear import fp8_linear
except ImportError:
    fp8_linear = None
helloyongyang's avatar
helloyongyang committed
49

50
51
52
53
54
try:
    import deep_gemm
except ImportError:
    deep_gemm = None

gushiqiao's avatar
gushiqiao committed
55
try:
Wq-dd's avatar
Wq-dd committed
56
    from torchao.quantization.utils import quant_int8_per_token_matmul, quantize_activation_per_token_absmax
57
except ImportError:
gushiqiao's avatar
gushiqiao committed
58
59
    quant_int8_per_token_matmul, quantize_activation_per_token_absmax = None, None

60
61
62
63
64
try:
    import gguf
except ImportError:
    gguf = None

65
66
try:
    import marlin_cuda_quant
67
except ImportError:
68
    marlin_cuda_quant = None
helloyongyang's avatar
helloyongyang committed
69

Kane's avatar
Kane committed
70
71
72
73
74
try:
    import torch_mlu_ops as tmo
except ImportError:
    tmo = None

75

helloyongyang's avatar
helloyongyang committed
76
class MMWeightTemplate(metaclass=ABCMeta):
77
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
helloyongyang's avatar
helloyongyang committed
78
79
        self.weight_name = weight_name
        self.bias_name = bias_name
80
        self.create_cuda_buffer = create_cuda_buffer
gushiqiao's avatar
fix.  
gushiqiao committed
81
82
        self.lazy_load = lazy_load
        self.lazy_load_file = lazy_load_file
83
        self.is_post_adapter = is_post_adapter
helloyongyang's avatar
helloyongyang committed
84
85
86
87
88
89
90
        self.config = {}

    @abstractmethod
    def load(self, weight_dict):
        pass

    @abstractmethod
91
    def apply(self):
helloyongyang's avatar
helloyongyang committed
92
93
        pass

94
95
    def set_config(self, config={}):
        self.config = config
helloyongyang's avatar
helloyongyang committed
96

gushiqiao's avatar
gushiqiao committed
97
    def to_cuda(self, non_blocking=False):
gushiqiao's avatar
gushiqiao committed
98
99
100
101
102
        self.weight = self.pin_weight.cuda(non_blocking=non_blocking)
        if hasattr(self, "pin_weight_scale"):
            self.weight_scale = self.pin_weight_scale.cuda(non_blocking=non_blocking)
        if hasattr(self, "pin_bias") and self.pin_bias is not None:
            self.bias = self.pin_bias.cuda(non_blocking=non_blocking)
gushiqiao's avatar
gushiqiao committed
103

104
    def to_cpu(self, non_blocking=False):
gushiqiao's avatar
gushiqiao committed
105
106
107
108
109
110
111
112
113
114
115
116
        if hasattr(self, "pin_weight"):
            self.weight = self.pin_weight.copy_(self.weight, non_blocking=non_blocking).cpu()
            if hasattr(self, "weight_scale_name"):
                self.weight_scale = self.pin_weight_scale.copy_(self.weight_scale, non_blocking=non_blocking).cpu()
            if self.bias is not None:
                self.bias = self.pin_bias.copy_(self.bias, non_blocking=non_blocking).cpu()
        else:
            self.weight = self.weight.to("cpu", non_blocking=non_blocking)
            if hasattr(self, "weight_scale"):
                self.weight_scale = self.weight_scale.to("cpu", non_blocking=non_blocking)
            if hasattr(self, "bias") and self.bias is not None:
                self.bias = self.bias.to("cpu", non_blocking=non_blocking)
117

helloyongyang's avatar
helloyongyang committed
118

Dongz's avatar
Dongz committed
119
@MM_WEIGHT_REGISTER("Default")
helloyongyang's avatar
helloyongyang committed
120
class MMWeight(MMWeightTemplate):
121
122
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, lazy_load, lazy_load_file, is_post_adapter)
helloyongyang's avatar
helloyongyang committed
123
124

    def load(self, weight_dict):
125
126
        if self.create_cuda_buffer:
            self.weight_cuda_buffer = weight_dict[self.weight_name].t().cuda()
127
            if self.bias_name is not None:
128
129
130
                self.bias_cuda_buffer = weight_dict[self.bias_name].cuda()
        else:
            device = weight_dict[self.weight_name].device
Kane's avatar
Kane committed
131
            if device.type in ["cuda", "mlu", "npu"]:
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
                self.weight = weight_dict[self.weight_name].t()
                if self.bias_name is not None:
                    self.bias = weight_dict[self.bias_name]
                else:
                    self.bias = None

            elif device.type == "cpu":
                weight_shape = weight_dict[self.weight_name].shape
                weight_dtype = weight_dict[self.weight_name].dtype

                self.pin_weight = torch.empty(weight_shape, pin_memory=True, dtype=weight_dtype)
                self.pin_weight = self.pin_weight.copy_(weight_dict[self.weight_name]).t()

                if self.bias_name is not None:
                    bias_shape = weight_dict[self.bias_name].shape
                    bias_dtype = weight_dict[self.bias_name].dtype
                    self.pin_bias = torch.empty(bias_shape, pin_memory=True, dtype=bias_dtype)
                    self.pin_bias.copy_(weight_dict[self.bias_name])
                else:
                    self.bias = None
                    self.pin_bias = None
                del weight_dict[self.weight_name]
gushiqiao's avatar
gushiqiao committed
154

155
            else:
156
                raise ValueError(f"Unsupported device type: {device.type}, only 'cpu' and 'cuda' are supported")
helloyongyang's avatar
helloyongyang committed
157

158
159
160
161
162
    def _calculate_size(self):
        if self.bias is not None:
            return self.weight.numel() * self.weight.element_size() + self.bias.numel() * self.bias.element_size()
        return self.weight.numel() * self.weight.element_size()

helloyongyang's avatar
helloyongyang committed
163
164
165
166
167
168
169
170
171
    def apply(self, input_tensor):
        shape = (input_tensor.shape[0], self.weight.shape[1])
        dtype = input_tensor.dtype
        device = input_tensor.device
        output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False)
        if self.bias is None:
            return torch.mm(input_tensor, self.weight, out=output_tensor)
        return torch.addmm(self.bias, input_tensor, self.weight, out=output_tensor)

helloyongyang's avatar
helloyongyang committed
172
173
174
    def state_dict(self, destination=None):
        if destination is None:
            destination = {}
175
176
177
        destination[self.weight_name] = self.pin_weight if hasattr(self, "pin_weight") else self.weight
        if self.bias_name is not None:
            destination[self.bias_name] = self.pin_bias if hasattr(self, "pin_bias") else self.bias
helloyongyang's avatar
helloyongyang committed
178
179
        return destination

180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
    def load_state_dict(self, destination, block_index, adapter_block_index=None):
        if self.is_post_adapter:
            assert adapter_block_index is not None
            weight_name = re.sub(r"\.\d+", lambda m: f".{adapter_block_index}", self.weight_name, count=1)
        else:
            weight_name = re.sub(r"\.\d+", lambda m: f".{block_index}", self.weight_name, count=1)

        if weight_name not in destination:
            self.weight = None
            return

        self.weight = self.weight_cuda_buffer.copy_(destination[weight_name], non_blocking=True)

        if self.bias_name is not None:
            if self.is_post_adapter:
                assert adapter_block_index is not None
                bias_name = re.sub(r"\.\d+", lambda m: f".{adapter_block_index}", self.bias_name, count=1)
            else:
                bias_name = re.sub(r"\.\d+", lambda m: f".{block_index}", self.bias_name, count=1)
            self.bias = self.bias_cuda_buffer.copy_(destination[bias_name], non_blocking=True)
        else:
            self.bias = None

helloyongyang's avatar
helloyongyang committed
203

Dongz's avatar
Dongz committed
204
@MM_WEIGHT_REGISTER("Default-Force-FP32")
205
class MMWeightForceFP32(MMWeight):
206
207
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, lazy_load, lazy_load_file, is_post_adapter)
helloyongyang's avatar
helloyongyang committed
208
209
210
211

    def load(self, weight_dict):
        super().load(weight_dict)
        self.weight = self.weight.to(torch.float32)
212
        if hasattr(self, "bias") and self.bias is not None:
helloyongyang's avatar
helloyongyang committed
213
214
215
            self.bias = self.bias.to(torch.float32)


216
class MMWeightQuantTemplate(MMWeightTemplate):
217
218
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, lazy_load, lazy_load_file, is_post_adapter)
219
        self.weight_scale_name = self.weight_name.removesuffix(".weight") + ".weight_scale"
220
221
222
        self.load_func = None
        self.weight_need_transpose = True
        self.act_quant_func = None
223
224
        self.lazy_load = lazy_load
        self.lazy_load_file = lazy_load_file
225
        self.infer_dtype = GET_DTYPE()
226

helloyongyang's avatar
helloyongyang committed
227
228
229
    # =========================
    # weight load functions
    # =========================
230

231
    def load_from_disk(self):  # Need Rewrite
232
233
234
235
        if not torch._dynamo.is_compiling():
            self.weight = self.lazy_load_file.get_tensor(self.weight_name).pin_memory()
            self.weight_scale = self.lazy_load_file.get_tensor(self.weight_scale_name).float().pin_memory()
            if self.bias_name is not None:
236
                self.bias = self.lazy_load_file.get_tensor(self.bias_name).to(self.infer_dtype).pin_memory()
237
238
239
240
        else:
            self.weight = self.lazy_load_file.get_tensor(self.weight_name)
            self.weight_scale = self.lazy_load_file.get_tensor(self.weight_scale_name).float()
            if self.bias_name is not None:
241
                self.bias = self.lazy_load_file.get_tensor(self.bias_name).to(self.infer_dtype)
242

helloyongyang's avatar
helloyongyang committed
243
244
        if self.weight_need_transpose:
            self.weight = self.weight.t()
245

246
247
248
249
    def load(self, weight_dict):
        if not self.lazy_load:
            self.load_func(weight_dict)
            if self.weight_need_transpose:
gushiqiao's avatar
gushiqiao committed
250
251
                if hasattr(self, "weight"):
                    self.weight = self.weight.t()
252
                if hasattr(self, "pin_weight"):
gushiqiao's avatar
gushiqiao committed
253
                    self.pin_weight = self.pin_weight.t()
254
255
                if hasattr(self, "weight_cuda_buffer"):
                    self.weight_cuda_buffer = self.weight_cuda_buffer.t()
256
257

    def clear(self):
gushiqiao's avatar
gushiqiao committed
258
        attrs = ["weight", "weight_scale", "bias", "pin_weight", "pin_weight_scale", "pin_bias"]
259
260
261
262
263
264
265
266
267
268
        for attr in attrs:
            if hasattr(self, attr):
                delattr(self, attr)
                setattr(self, attr, None)

    def _calculate_size(self):
        if self.bias is not None:
            return self.weight.numel() * self.weight.element_size() + self.weight_scale.numel() * self.weight_scale.element_size() + self.bias.numel() * self.bias.element_size()
        return self.weight.numel() * self.weight.element_size() + self.weight_scale.numel() * self.weight_scale.element_size()

269
    def load_quantized(self, weight_dict):
270
271
272
273
274
275
        if self.create_cuda_buffer:
            # move to cuda buffer
            self.weight_cuda_buffer = weight_dict[self.weight_name].cuda()
            self.weight_scale_cuda_buffer = weight_dict[self.weight_scale_name].float().cuda()
        else:
            device = weight_dict[self.weight_name].device
Kane's avatar
Kane committed
276
            if device.type in ["cuda", "mlu", "npu"]:
277
278
279
280
281
282
283
                self.weight = weight_dict[self.weight_name]
                self.weight_scale = weight_dict[self.weight_scale_name].float()
            elif device.type == "cpu":
                weight_shape = weight_dict[self.weight_name].shape
                weight_dtype = weight_dict[self.weight_name].dtype
                self.pin_weight = torch.empty(weight_shape, pin_memory=True, dtype=weight_dtype)
                self.pin_weight.copy_(weight_dict[self.weight_name])
284

285
286
287
288
289
290
291
292
293
294
295
296
297
298
                weight_scale_shape = weight_dict[self.weight_scale_name].shape
                weight_scale_dtype = torch.float
                self.pin_weight_scale = torch.empty(weight_scale_shape, pin_memory=True, dtype=weight_scale_dtype)
                self.pin_weight_scale.copy_(weight_dict[self.weight_scale_name])
                del weight_dict[self.weight_name]
            else:
                raise ValueError(f"Unsupported device type: {device.type}, only 'cpu' and 'cuda' are supported")

        if self.bias_name is not None:
            if self.create_cuda_buffer:
                # move to cuda buffer
                self.bias_cuda_buffer = weight_dict[self.bias_name].cuda()
            else:
                device = weight_dict[self.bias_name].device
Kane's avatar
Kane committed
299
                if device.type in ["cuda", "mlu", "npu"]:
300
301
302
303
304
305
306
307
                    self.bias = weight_dict[self.bias_name]
                elif device.type == "cpu":
                    bias_shape = weight_dict[self.bias_name].shape
                    bias_dtype = weight_dict[self.bias_name].dtype
                    self.pin_bias = torch.empty(bias_shape, pin_memory=True, dtype=bias_dtype)
                    self.pin_bias.copy_(weight_dict[self.bias_name])
                else:
                    raise ValueError(f"Unsupported device type: {device.type}, only 'cpu' and 'cuda' are supported")
gushiqiao's avatar
gushiqiao committed
308
        else:
309
310
            self.bias = None
            self.pin_bias = None
311
312

    def load_fp8_perchannel_sym(self, weight_dict):
313
        if self.config.get("weight_auto_quant", False):
314
            self.weight = weight_dict[self.weight_name].to(torch.float32)
315
316
317
318
319
320
            w_quantizer = FloatQuantizer("e4m3", True, "per_channel")
            self.weight, self.weight_scale, _ = w_quantizer.real_quant_tensor(self.weight)
            self.weight = self.weight.to(torch.float8_e4m3fn)
            self.weight_scale = self.weight_scale.to(torch.float32)
        else:
            self.load_quantized(weight_dict)
321

322
    def load_int8_perchannel_sym(self, weight_dict):
323
        if self.config.get("weight_auto_quant", False):
324
            self.weight = weight_dict[self.weight_name].to(torch.float32)
325
326
327
328
329
330
            w_quantizer = IntegerQuantizer(8, True, "per_channel")
            self.weight, self.weight_scale, _ = w_quantizer.real_quant_tensor(self.weight)
            self.weight = self.weight.to(torch.int8)
            self.weight_scale = self.weight_scale.to(torch.float32)
        else:
            self.load_quantized(weight_dict)
331

332
333
334
335
336
337
338
339
    def load_mxfp4(self, weight_dict):
        if self.config.get("weight_auto_quant", False):
            device = weight_dict[self.weight_name].device
            self.weight = weight_dict[self.weight_name].cuda().to(torch.bfloat16)
            self.weight, self.weight_scale = scaled_mxfp4_quant(self.weight)
            self.weight, self.weight_scale = self.weight.to(device), self.weight_scale.to(device)
        else:
            device = weight_dict[self.weight_name].device
Kane's avatar
Kane committed
340
            if device.type in ["cuda", "mlu", "npu"]:
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
                self.weight = weight_dict[self.weight_name]
                self.weight_scale = weight_dict[self.weight_scale_name]
            elif device.type == "cpu":
                weight_shape = weight_dict[self.weight_name].shape
                weight_dtype = weight_dict[self.weight_name].dtype
                self.pin_weight = torch.empty(weight_shape, pin_memory=True, dtype=weight_dtype)
                self.pin_weight.copy_(weight_dict[self.weight_name])

                weight_scale_shape = weight_dict[self.weight_scale_name].shape
                weight_scale_dtype = weight_dict[self.weight_scale_name].dtype
                self.pin_weight_scale = torch.empty(weight_scale_shape, pin_memory=True, dtype=weight_scale_dtype)
                self.pin_weight_scale.copy_(weight_dict[self.weight_scale_name])
                del weight_dict[self.weight_name]
            else:
                raise ValueError(f"Unsupported device type: {device.type}, only 'cpu' and 'cuda' are supported")

    def load_mxfp6(self, weight_dict):
        if self.config.get("weight_auto_quant", False):
            device = weight_dict[self.weight_name].device
            self.weight = weight_dict[self.weight_name].cuda().to(torch.bfloat16)
            self.weight, self.weight_scale = scaled_mxfp6_quant(self.weight)
            self.weight, self.weight_scale = self.weight.to(device), self.weight_scale.to(device)
        else:
            device = weight_dict[self.weight_name].device
Kane's avatar
Kane committed
365
            if device.type in ["cuda", "mlu", "npu"]:
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
                self.weight = weight_dict[self.weight_name]
                self.weight_scale = weight_dict[self.weight_scale_name]
            elif device.type == "cpu":
                weight_shape = weight_dict[self.weight_name].shape
                weight_dtype = weight_dict[self.weight_name].dtype
                self.pin_weight = torch.empty(weight_shape, pin_memory=True, dtype=weight_dtype)
                self.pin_weight.copy_(weight_dict[self.weight_name])

                weight_scale_shape = weight_dict[self.weight_scale_name].shape
                weight_scale_dtype = weight_dict[self.weight_scale_name].dtype
                self.pin_weight_scale = torch.empty(weight_scale_shape, pin_memory=True, dtype=weight_scale_dtype)
                self.pin_weight_scale.copy_(weight_dict[self.weight_scale_name])
                del weight_dict[self.weight_name]
            else:
                raise ValueError(f"Unsupported device type: {device.type}, only 'cpu' and 'cuda' are supported")

    def load_mxfp8(self, weight_dict):
        if self.config.get("weight_auto_quant", False):
            device = weight_dict[self.weight_name].device
            self.weight = weight_dict[self.weight_name].cuda().to(torch.bfloat16)
            self.weight, self.weight_scale = scaled_mxfp8_quant(self.weight)
            self.weight, self.weight_scale = self.weight.to(device), self.weight_scale.to(device)
        else:
            device = weight_dict[self.weight_name].device
Kane's avatar
Kane committed
390
            if device.type in ["cuda", "mlu", "npu"]:
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
                self.weight = weight_dict[self.weight_name]
                self.weight_scale = weight_dict[self.weight_scale_name]
            elif device.type == "cpu":
                weight_shape = weight_dict[self.weight_name].shape
                weight_dtype = weight_dict[self.weight_name].dtype
                self.pin_weight = torch.empty(weight_shape, pin_memory=True, dtype=weight_dtype)
                self.pin_weight.copy_(weight_dict[self.weight_name])

                weight_scale_shape = weight_dict[self.weight_scale_name].shape
                weight_scale_dtype = weight_dict[self.weight_scale_name].dtype
                self.pin_weight_scale = torch.empty(weight_scale_shape, pin_memory=True, dtype=weight_scale_dtype)
                self.pin_weight_scale.copy_(weight_dict[self.weight_scale_name])
                del weight_dict[self.weight_name]
            else:
                raise ValueError(f"Unsupported device type: {device.type}, only 'cpu' and 'cuda' are supported")

    def load_nvfp4(self, weight_dict):
        device = weight_dict[self.weight_name].device

        input_absmax = weight_dict[self.weight_name.replace(".weight", ".input_absmax")]
        input_global_scale = (2688.0 / input_absmax).to(torch.float32)
        weight_global_scale = weight_dict[f"{self.weight_name}_global_scale"]
        alpha = 1.0 / (input_global_scale * weight_global_scale)

Kane's avatar
Kane committed
415
        if device.type in ["cuda", "mlu", "npu"]:
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
            self.weight = weight_dict[self.weight_name]
            self.weight_scale = weight_dict[self.weight_scale_name]
            self.input_global_scale = input_global_scale
            self.alpha = alpha
        elif device.type == "cpu":
            weight_shape = weight_dict[self.weight_name].shape
            weight_dtype = weight_dict[self.weight_name].dtype
            self.pin_weight = torch.empty(weight_shape, pin_memory=True, dtype=weight_dtype)
            self.pin_weight.copy_(weight_dict[self.weight_name])

            weight_scale_shape = weight_dict[self.weight_scale_name].shape
            weight_scale_dtype = weight_dict[self.weight_scale_name].dtype
            self.pin_weight_scale = torch.empty(weight_scale_shape, pin_memory=True, dtype=weight_scale_dtype)
            self.pin_weight_scale.copy_(weight_dict[self.weight_scale_name])

            input_global_scale_shape = input_global_scale.shape
            input_global_scale_dtype = input_global_scale.dtype
            self.pin_input_global_scale = torch.empty(input_global_scale_shape, pin_memory=True, dtype=input_global_scale_dtype)
            self.pin_input_global_scale.copy_(input_global_scale)

            alpha_shape = alpha.shape
            alpha_dtype = alpha.dtype
            self.pin_alpha = torch.empty(alpha_shape, pin_memory=True, dtype=alpha_dtype)
            self.pin_alpha.copy_(alpha)

            del weight_dict[self.weight_name]
        else:
            raise ValueError(f"Unsupported device type: {device.type}, only 'cpu' and 'cuda' are supported")

Gu Shiqiao's avatar
Gu Shiqiao committed
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
        if self.bias_name is not None:
            if self.create_cuda_buffer:
                # move to cuda buffer
                self.bias_cuda_buffer = weight_dict[self.bias_name].cuda()
            else:
                device = weight_dict[self.bias_name].device
                if device.type == "cuda":
                    self.bias = weight_dict[self.bias_name]
                elif device.type == "cpu":
                    bias_shape = weight_dict[self.bias_name].shape
                    bias_dtype = weight_dict[self.bias_name].dtype
                    self.pin_bias = torch.empty(bias_shape, pin_memory=True, dtype=bias_dtype)
                    self.pin_bias.copy_(weight_dict[self.bias_name])
                else:
                    raise ValueError(f"Unsupported device type: {device.type}, only 'cpu' and 'cuda' are supported")
        else:
            self.bias = None
            self.pin_bias = None

464
    def load_fp8_perblock128_sym(self, weight_dict):
465
        if self.config.get("weight_auto_quant", False):
466
            self.weight = weight_dict[self.weight_name]
467
468
469
            self.weight, self.weight_scale = self.per_block_cast_to_fp8(self.weight)
        else:
            self.load_quantized(weight_dict)
470

471
472
473
    def per_block_cast_to_fp8(self, x):
        assert x.dim() == 2
        m, n = x.shape
474
475
476
477
478
        x_padded = torch.zeros(
            (deep_gemm.ceil_div(m, 128) * 128, deep_gemm.ceil_div(n, 128) * 128),
            dtype=x.dtype,
            device=x.device,
        )
479
480
481
482
483
484
        x_padded[:m, :n] = x
        x_view = x_padded.view(-1, 128, x_padded.size(1) // 128, 128)
        x_amax = x_view.abs().float().amax(dim=(1, 3), keepdim=True).clamp(1e-4)
        x_scaled = (x_view * (448.0 / x_amax)).to(torch.float8_e4m3fn)
        return x_scaled.view_as(x_padded)[:m, :n].contiguous(), (x_amax / 448.0).view(x_view.size(0), x_view.size(2))

helloyongyang's avatar
helloyongyang committed
485
486
487
    # =========================
    # act quant kernels
    # =========================
gushiqiao's avatar
gushiqiao committed
488
489
490
    def act_quant_int8_perchannel_sym_torchao(self, x):
        input_tensor_quant, input_tensor_scale = quantize_activation_per_token_absmax(x)
        return input_tensor_quant, input_tensor_scale
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506

    def act_quant_fp8_perchannel_sym_vllm(self, x):
        input_tensor_quant, input_tensor_scale = ops.scaled_fp8_quant(x, None, scale_ub=None, use_per_token_if_dynamic=True)
        return input_tensor_quant, input_tensor_scale

    def act_quant_fp8_perchannel_sym_sgl(self, x):
        m, k = x.shape
        input_tensor_quant = torch.empty((m, k), dtype=torch.float8_e4m3fn, device="cuda", requires_grad=False)
        input_tensor_scale = torch.empty((m, 1), dtype=torch.float32, device="cuda", requires_grad=False)
        sgl_kernel.sgl_per_token_quant_fp8(x, input_tensor_quant, input_tensor_scale)
        return input_tensor_quant, input_tensor_scale

    def act_quant_int8_perchannel_sym_vllm(self, x):
        input_tensor_quant, input_tensor_scale, _ = ops.scaled_int8_quant(x, scale=None, azp=None, symmetric=True)
        return input_tensor_quant, input_tensor_scale

507
508
509
510
511
512
513
514
515
516
517
518
    def act_quant_nvfp4(self, x):
        input_tensor_quant, input_tensor_scale = scaled_nvfp4_quant(x, self.input_global_scale)
        return input_tensor_quant, input_tensor_scale

    def act_quant_mxfp4(self, x):
        input_tensor_quant, input_tensor_scale = scaled_mxfp4_quant(x)
        return input_tensor_quant, input_tensor_scale

    def act_quant_mxfp8(self, x):
        input_tensor_quant, input_tensor_scale = scaled_mxfp8_quant(x)
        return input_tensor_quant, input_tensor_scale

519
520
521
522
523
524
525
526
527
528
529
    def act_quant_fp8_perchannelgroup128_sym_deepgemm(self, x):
        assert x.dim() == 2 and x.size(1) % 128 == 0
        m, n = x.shape
        x_view = x.view(m, -1, 128)
        x_amax = x_view.abs().float().amax(dim=2).view(m, -1).clamp(1e-4)
        return (x_view * (448.0 / x_amax.unsqueeze(2))).to(torch.float8_e4m3fn).view(m, n), (x_amax / 448.0).view(m, -1)

    def act_quant_fp8_perchannelgroup128_sym_sgl(self, x):
        m, k = x.shape
        input_tensor_quant = torch.empty((m, k), dtype=torch.float8_e4m3fn, device="cuda", requires_grad=False)
        input_tensor_scale = torch.empty((m, k // 128), dtype=torch.float32, device="cuda", requires_grad=False)
530
531
532
533
534
535
536
537
538
        sgl_kernel.sgl_per_token_group_quant_fp8(
            x,
            input_tensor_quant,
            input_tensor_scale,
            group_size=128,
            eps=1e-10,
            fp8_min=-448.0,
            fp8_max=448.0,
        )
539
540
        return input_tensor_quant, input_tensor_scale

541
542
543
    def state_dict(self, destination=None):
        if destination is None:
            destination = {}
544
545
546
547
        destination[self.weight_name] = self.pin_weight if hasattr(self, "pin_weight") else self.weight
        if self.bias_name is not None:
            destination[self.bias_name] = self.pin_bias if hasattr(self, "pin_bias") else self.bias
        destination[self.weight_scale_name] = self.pin_weight_scale if hasattr(self, "pin_weight_scale") else self.weight_scale
548
549
        return destination

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
    def load_state_dict(self, destination, block_index, adapter_block_index=None):
        if self.is_post_adapter:
            weight_name = re.sub(r"\.\d+", lambda m: f".{adapter_block_index}", self.weight_name, count=1)
            weight_scale_name = re.sub(r"\.\d+", lambda m: f".{adapter_block_index}", self.weight_scale_name, count=1)
        else:
            weight_name = re.sub(r"\.\d+", lambda m: f".{block_index}", self.weight_name, count=1)
            weight_scale_name = re.sub(r"\.\d+", lambda m: f".{block_index}", self.weight_scale_name, count=1)

        if weight_name not in destination:
            self.weight = None
            return

        self.weight = self.weight_cuda_buffer.copy_(destination[weight_name], non_blocking=True)
        self.weight_scale = self.weight_scale_cuda_buffer.copy_(destination[weight_scale_name], non_blocking=True)

        if self.bias_name is not None:
            bias_name = re.sub(r"\.\d+", lambda m: f".{block_index}", self.bias_name, count=1)
            self.bias = self.bias_cuda_buffer.copy_(destination[bias_name], non_blocking=True)
        else:
            self.bias = None

571

572
@MM_WEIGHT_REGISTER("fp8-vllm")
573
class MMWeightWfp8channelAfp8channeldynamicVllm(MMWeightQuantTemplate):
Dongz's avatar
Dongz committed
574
    """
helloyongyang's avatar
helloyongyang committed
575
576
577
578
579
580
    Name: W-fp8-channel-sym-A-fp8-channel-sym-dynamic-Vllm

    Quant MM:
        Weight: fp8 perchannel sym
        Act: fp8 perchannel dynamic sym
        Kernel: vllm
Dongz's avatar
Dongz committed
581
582
    """

583
584
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, lazy_load, lazy_load_file, is_post_adapter)
585
586
587
        self.load_func = self.load_fp8_perchannel_sym
        self.weight_need_transpose = True
        self.act_quant_func = self.act_quant_fp8_perchannel_sym_vllm
helloyongyang's avatar
helloyongyang committed
588
589
590
591
592
593

    def apply(self, input_tensor):
        shape = (input_tensor.shape[0], self.weight.shape[1])
        dtype = input_tensor.dtype
        device = input_tensor.device
        output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False)
594
595

        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
596
597
598
599
600
601
        torch.ops._C.cutlass_scaled_mm(
            output_tensor,
            input_tensor_quant,
            self.weight,
            input_tensor_scale,
            self.weight_scale,
gushiqiao's avatar
gushiqiao committed
602
            self.bias if self.bias is not None else None,
603
        )
helloyongyang's avatar
helloyongyang committed
604
605
606
        return output_tensor


607
@MM_WEIGHT_REGISTER("int8-vllm")
608
class MMWeightWint8channelAint8channeldynamicVllm(MMWeightQuantTemplate):
Dongz's avatar
Dongz committed
609
    """
helloyongyang's avatar
helloyongyang committed
610
611
612
613
614
615
    Name: W-int8-channel-sym-A-int8-channel-sym-dynamic-Vllm

    Quant MM:
        Weight: int8 perchannel sym
        Act: int8 perchannel dynamic sym
        Kernel: vllm
Dongz's avatar
Dongz committed
616
617
    """

618
619
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, lazy_load, lazy_load_file, is_post_adapter)
620
621
622
        self.load_func = self.load_int8_perchannel_sym
        self.weight_need_transpose = True
        self.act_quant_func = self.act_quant_int8_perchannel_sym_vllm
helloyongyang's avatar
helloyongyang committed
623
624
625
626
627

    def apply(self, input_tensor):
        shape = (input_tensor.shape[0], self.weight.shape[1])
        dtype = input_tensor.dtype
        device = input_tensor.device
Kane's avatar
Kane committed
628
        output_tensor = torch.zeros(shape, dtype=dtype, device=device, requires_grad=False)
629
630

        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
631
632
633
634
635
636
        torch.ops._C.cutlass_scaled_mm(
            output_tensor,
            input_tensor_quant,
            self.weight,
            input_tensor_scale,
            self.weight_scale,
gushiqiao's avatar
gushiqiao committed
637
            self.bias if self.bias is not None else None,
638
        )
helloyongyang's avatar
helloyongyang committed
639
640
641
        return output_tensor


642
643
644
645
646
647
648
649
650
651
@MM_WEIGHT_REGISTER("mxfp4")
class MMWeightWmxfp4Amxfp4dynamic(MMWeightQuantTemplate):
    """
    Name: W-mxfp4-A-mxfp4-dynamic

    Quant MM:
        Weight: mxfp4
        Act: mxfp4
    """

652
653
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, lazy_load, lazy_load_file, is_post_adapter)
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
        self.load_func = self.load_mxfp4
        self.weight_need_transpose = False
        self.act_quant_func = self.act_quant_mxfp4
        self.set_alpha()

    def set_alpha(self):
        self.alpha = torch.tensor(1.0, dtype=torch.float32)

    def apply(self, input_tensor):
        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
        self.alpha = self.alpha.to(self.weight.device)
        output_tensor = cutlass_scaled_mxfp4_mm(input_tensor_quant, self.weight, input_tensor_scale, self.weight_scale, alpha=self.alpha, bias=self.bias)
        return output_tensor


@MM_WEIGHT_REGISTER("mxfp6-mxfp8")
class MMWeightWmxfp6Amxfp8dynamic(MMWeightQuantTemplate):
    """
    Name: W-mxfp6-A-nvfp8-dynamic

    Quant MM:
        Weight: mxfp6
        Act: mxfp8
    """

679
680
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, lazy_load, lazy_load_file, is_post_adapter)
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
        self.load_func = self.load_mxfp6
        self.weight_need_transpose = False
        self.act_quant_func = self.act_quant_mxfp8
        self.set_alpha()

    def set_alpha(self):
        self.alpha = torch.tensor(1.0, dtype=torch.float32)

    def apply(self, input_tensor):
        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
        self.alpha = self.alpha.to(self.weight.device)
        output_tensor = cutlass_scaled_mxfp6_mxfp8_mm(input_tensor_quant, self.weight, input_tensor_scale, self.weight_scale, alpha=self.alpha, bias=self.bias)
        return output_tensor


@MM_WEIGHT_REGISTER("mxfp8")
class MMWeightWmxfp8Amxfp8dynamic(MMWeightQuantTemplate):
    """
    Name: W-mxfp8-A-nvfp8-dynamic

    Quant MM:
        Weight: mxfp8
        Act: mxfp8
    """

706
707
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, lazy_load, lazy_load_file, is_post_adapter)
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
        self.load_func = self.load_mxfp8
        self.weight_need_transpose = False
        self.act_quant_func = self.act_quant_mxfp8
        self.set_alpha()

    def set_alpha(self):
        self.alpha = torch.tensor(1.0, dtype=torch.float32)

    def apply(self, input_tensor):
        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
        self.alpha = self.alpha.to(self.weight.device)
        output_tensor = cutlass_scaled_mxfp8_mm(input_tensor_quant, self.weight, input_tensor_scale, self.weight_scale, alpha=self.alpha, bias=self.bias)
        return output_tensor


@MM_WEIGHT_REGISTER("nvfp4")
class MMWeightWnvfp4Anvfp4dynamic(MMWeightQuantTemplate):
    """
    Name: W-nvfp4-A-nvfp4-dynamic

    Quant MM:
        Weight: nvfp4
        Act: nvfp4
    """

733
734
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, lazy_load, lazy_load_file, is_post_adapter)
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
        self.load_func = self.load_nvfp4
        self.weight_need_transpose = False
        self.act_quant_func = self.act_quant_nvfp4

    def apply(self, input_tensor):
        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
        output_tensor = cutlass_scaled_nvfp4_mm(input_tensor_quant, self.weight, input_tensor_scale, self.weight_scale, alpha=self.alpha, bias=self.bias)
        return output_tensor

    def to_cuda(self, non_blocking=False):
        self.weight = self.pin_weight.cuda(non_blocking=non_blocking)
        if hasattr(self, "pin_weight_scale"):
            self.weight_scale = self.pin_weight_scale.cuda(non_blocking=non_blocking)
            self.input_global_scale = self.pin_input_global_scale.cuda(non_blocking=non_blocking)
            self.alpha = self.pin_alpha.cuda(non_blocking=non_blocking)
        if hasattr(self, "pin_bias") and self.pin_bias is not None:
            self.bias = self.pin_bias.cuda(non_blocking=non_blocking)

    def to_cpu(self, non_blocking=False):
        if hasattr(self, "pin_weight"):
            self.weight = self.pin_weight.copy_(self.weight, non_blocking=non_blocking).cpu()
            if hasattr(self, "weight_scale_name"):
                self.weight_scale = self.pin_weight_scale.copy_(self.weight_scale, non_blocking=non_blocking).cpu()
                self.input_global_scale = self.pin_input_global_scale.copy_(self.input_global_scale, non_blocking=non_blocking).cpu()
                self.alpha = self.pin_alpha.copy_(self.alpha, non_blocking=non_blocking).cpu()
            if self.bias is not None:
                self.bias = self.pin_bias.copy_(self.bias, non_blocking=non_blocking).cpu()
        else:
            self.weight = self.weight.to("cpu", non_blocking=non_blocking)
            if hasattr(self, "weight_scale"):
                self.weight_scale = self.weight_scale.to("cpu", non_blocking=non_blocking)
                self.input_global_scale = self.input_global_scale.to("cpu", non_blocking=non_blocking)
                self.alpha = self.alpha.to("cpu", non_blocking=non_blocking)
            if hasattr(self, "bias") and self.bias is not None:
                self.bias = self.bias.to("cpu", non_blocking=non_blocking)


@MM_WEIGHT_REGISTER("Calib")
class MMCalibNvfp4(MMWeight):
    """
    Name: calib

    Calib:
        absmax: torch.max(torch.abs(input_tensor))
    """

781
782
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, lazy_load, lazy_load_file, is_post_adapter)
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
        self.running_absmax = None
        self.count = 0
        self.decay = 0.9

    def apply(self, input_tensor):
        shape = (input_tensor.shape[0], self.weight.shape[1])
        dtype, device = input_tensor.dtype, input_tensor.device

        current_absmax = torch.max(torch.abs(input_tensor)).to("cpu")
        if self.count % 2 == 0:
            if self.running_absmax is None:
                self.running_absmax = current_absmax
            else:
                self.running_absmax = self.decay * self.running_absmax + (1 - self.decay) * current_absmax
            CALIB["absmax"][self.weight_name] = self.running_absmax
        self.count = self.count + 1

        output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False)
        if self.bias is None:
            return torch.mm(input_tensor, self.weight, out=output_tensor)
        return torch.addmm(self.bias, input_tensor, self.weight, out=output_tensor)


806
@MM_WEIGHT_REGISTER("fp8-q8f")
807
808
809
810
811
812
813
814
815
816
class MMWeightWfp8channelAfp8channeldynamicQ8F(MMWeightQuantTemplate):
    """
    Name: W-fp8-channel-sym-A-fp8-channel-sym-dynamic-Q8F

    Quant MM:
        Weight: fp8 perchannel sym
        Act: fp8 perchannel dynamic sym
        Kernel: Q8F
    """

817
818
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, lazy_load, lazy_load_file, is_post_adapter)
819
820
821
822
823
824
        self.load_func = self.load_fp8_perchannel_sym
        self.weight_need_transpose = False
        self.act_quant_func = self.act_quant_fp8_perchannel_sym_vllm

    def apply(self, input_tensor):
        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
gushiqiao's avatar
gushiqiao committed
825
        output_tensor = fp8_linear(
826
827
            input_tensor_quant,
            self.weight,
gushiqiao's avatar
gushiqiao committed
828
            self.bias.float() if self.bias is not None else None,
829
830
            input_tensor_scale,
            self.weight_scale,
831
            out_dtype=self.infer_dtype,
832
        )
Yang Yong (雍洋)'s avatar
Yang Yong (雍洋) committed
833
        return output_tensor.squeeze(0) if len(output_tensor.shape) == 3 else output_tensor
834
835


836
@MM_WEIGHT_REGISTER("int8-q8f")
837
class MMWeightWint8channelAint8channeldynamicQ8F(MMWeightQuantTemplate):
Dongz's avatar
Dongz committed
838
    """
839
840
841
842
843
844
    Name: W-int8-channel-sym-A-int8-channel-sym-dynamic-Q8F

    Quant MM:
        Weight: int8 perchannel sym
        Act: int8 perchannel dynamic sym
        Kernel: Q8F
Dongz's avatar
Dongz committed
845
846
    """

847
848
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, lazy_load, lazy_load_file, is_post_adapter)
849
850
851
        self.load_func = self.load_int8_perchannel_sym
        self.weight_need_transpose = False
        self.act_quant_func = self.act_quant_int8_perchannel_sym_vllm
852

853
854
    def apply(self, input_tensor):
        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
gushiqiao's avatar
gushiqiao committed
855
        output_tensor = q8_linear(
856
857
            input_tensor_quant,
            self.weight,
gushiqiao's avatar
gushiqiao committed
858
            self.bias.float() if self.bias is not None else None,
859
860
861
            input_tensor_scale,
            self.weight_scale,
            fuse_gelu=False,
862
            out_dtype=self.infer_dtype,
863
        )
Yang Yong (雍洋)'s avatar
Yang Yong (雍洋) committed
864
        return output_tensor.squeeze(0) if len(output_tensor.shape) == 3 else output_tensor
865
866


867
@MM_WEIGHT_REGISTER("fp8-b128-deepgemm")
868
869
870
871
872
873
874
875
876
877
class MMWeightWfp8block128Afp8channelgroup128dynamicDeepgemmActSgl(MMWeightQuantTemplate):
    """
    Name: W-fp8-block128-sym-A-fp8-channel-group128-sym-dynamic-Deepgemm-ActSgl

    Quant MM:
        Weight: fp8 perblock 128x128 sym
        Act: fp8 pertoken-pergroup group=128 dynamic sym
        Kernel: quant-mm using Deepgemm, act dynamic quant using Sgl-kernel
    """

878
879
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, lazy_load, lazy_load_file, is_post_adapter)
880
881
882
883
884
885
886
887
888
889
890
        self.load_func = self.load_fp8_perblock128_sym
        self.weight_need_transpose = False
        self.act_quant_func = self.act_quant_fp8_perchannelgroup128_sym_sgl

    def apply(self, input_tensor):
        shape = (input_tensor.shape[0], self.weight.shape[0])
        dtype = input_tensor.dtype
        device = input_tensor.device
        output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False)

        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
891
892
893
894
895
896
        deep_gemm.gemm_fp8_fp8_bf16_nt(
            (input_tensor_quant, input_tensor_scale),
            (self.weight, self.weight_scale),
            output_tensor,
        )
        if hasattr(self, "bias") and self.bias is not None:
897
898
899
900
            output_tensor.add_(self.bias)
        return output_tensor


901
@MM_WEIGHT_REGISTER("fp8-sgl")
902
903
904
905
906
907
908
909
910
911
class MMWeightWfp8channelAfp8channeldynamicSgl(MMWeightQuantTemplate):
    """
    Name: W-fp8-channel-sym-A-fp8-channel-sym-dynamic-Sgl

    Quant MM:
        Weight: fp8 perchannel sym
        Act: fp8 perchannel dynamic sym
        Kernel: Sgl-kernel
    """

912
913
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, lazy_load, lazy_load_file, is_post_adapter)
914
915
916
        self.load_func = self.load_fp8_perchannel_sym
        self.weight_need_transpose = True
        self.act_quant_func = self.act_quant_fp8_perchannel_sym_sgl
917
918

    def apply(self, input_tensor):
919
        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
920
921
922
923
924
        output_tensor = sgl_kernel.fp8_scaled_mm(
            input_tensor_quant,
            self.weight,
            input_tensor_scale,
            self.weight_scale,
925
            self.infer_dtype,
926
927
            bias=self.bias,
        )
928
929
930
        return output_tensor


931
@MM_WEIGHT_REGISTER("int8-sgl")
helloyongyang's avatar
helloyongyang committed
932
class MMWeightWint8channelAint8channeldynamicSglActVllm(MMWeightQuantTemplate):
933
934
935
936
937
938
939
940
941
    """
    Name: W-int8-channel-sym-A-int8-channel-sym-dynamic-Sgl-ActVllm

    Quant MM:
        Weight: int8 perchannel sym
        Act: int8 perchannel dynamic sym
        Kernel: quant-mm using Sgl-kernel, act dynamic quant using vllm
    """

942
943
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, lazy_load, lazy_load_file, is_post_adapter)
944
945
946
947
948
949
950
951
952
953
954
        self.load_func = self.load_int8_perchannel_sym
        self.weight_need_transpose = True
        self.act_quant_func = self.act_quant_int8_perchannel_sym_vllm

    def apply(self, input_tensor):
        shape = (input_tensor.shape[0], self.weight.shape[1])
        dtype = input_tensor.dtype
        device = input_tensor.device
        output_tensor = torch.empty(shape, dtype=dtype, device=device, requires_grad=False)

        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
955
956
957
958
959
        output_tensor = sgl_kernel.int8_scaled_mm(
            input_tensor_quant,
            self.weight,
            input_tensor_scale,
            self.weight_scale,
960
            self.infer_dtype,
gushiqiao's avatar
gushiqiao committed
961
            self.bias if self.bias is not None else None,
962
        )
963
        return output_tensor
964
965


966
@MM_WEIGHT_REGISTER("int8-torchao")
gushiqiao's avatar
gushiqiao committed
967
968
969
970
971
972
973
974
975
976
class MMWeightWint8channelAint8channeldynamicSglActVllm(MMWeightQuantTemplate):
    """
    Name: W-int8-channel-sym-A-int8-channel-sym-dynamic-Torchao

    Quant MM:
        Weight: int8 perchannel sym
        Act: int8 perchannel dynamic sym
        Kernel: Torchao
    """

977
978
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, lazy_load, lazy_load_file, is_post_adapter)
gushiqiao's avatar
gushiqiao committed
979
980
981
982
983
984
985
        self.load_func = self.load_int8_perchannel_sym
        self.weight_need_transpose = True
        self.act_quant_func = self.act_quant_int8_perchannel_sym_torchao

    def apply(self, input_tensor):
        input_tensor = input_tensor
        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
986
        output_tensor = quant_int8_per_token_matmul(input_tensor_quant, input_tensor_scale, self.weight, self.weight_scale.t().float(), output_dtype=self.infer_dtype)
gushiqiao's avatar
gushiqiao committed
987
988
989
990
991
992
        if self.bias is not None:
            output_tensor = output_tensor + self.bias

        return output_tensor


yihuiwen's avatar
yihuiwen committed
993
class MMWeightGGUFTemplate(MMWeightTemplate):
994
995
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, lazy_load, lazy_load_file, is_post_adapter)
996

yihuiwen's avatar
yihuiwen committed
997
998
999
    def load(self, weight_dict):
        assert not self.create_cuda_buffer, "GGUF Unsupported offload block"
        self.weight = weight_dict[self.weight_name]
1000

yihuiwen's avatar
yihuiwen committed
1001
1002
        weight_shape = self.weight.shape
        weight_dtype = self.weight.dtype
1003

yihuiwen's avatar
yihuiwen committed
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
        if isinstance(self.weight, GGMLTensor):
            self.pin_weight = GGMLTensor.empty_pinned(weight_shape, orig_shape=self.weight.orig_shape, dtype=weight_dtype, gguf_type=self.weight.gguf_type)
            self.pin_weight.copy_from(self.weight)
        else:
            self.pin_weight = torch.empty(weight_shape, pin_memory=True, dtype=weight_dtype)
            self.pin_weight.copy_(weight_dict[self.weight_name])

        if self.bias_name is not None:
            self.bias = weight_dict[self.bias_name]
            if isinstance(self.bias, GGMLTensor):
                self.pin_bias = GGMLTensor.empty_pinned(self.bias.shape, orig_shape=self.bias.orig_shape, dtype=self.bias.dtype, gguf_type=self.bias.gguf_type)
                self.pin_bias.copy_from(self.bias)
            else:
                self.pin_bias = torch.empty(self.bias.shape, pin_memory=True, dtype=self.bias.dtype)
                self.pin_bias.copy_(weight_dict[self.bias_name])
        else:
            self.bias = None

    def load_state_dict(self, destination, block_index, adapter_block_index=None):
        if self.is_post_adapter:
            assert adapter_block_index is not None
            weight_name = re.sub(r"\.\d+", lambda m: f".{adapter_block_index}", self.weight_name, count=1)
        else:
            weight_name = re.sub(r"\.\d+", lambda m: f".{block_index}", self.weight_name, count=1)

        if weight_name not in destination:
            self.weight = None
            return

        self.weight = self.weight_cuda_buffer.copy_(destination[weight_name], non_blocking=True)

        if self.bias_name is not None:
            if self.is_post_adapter:
                assert adapter_block_index is not None
                bias_name = re.sub(r"\.\d+", lambda m: f".{adapter_block_index}", self.bias_name, count=1)
            else:
                bias_name = re.sub(r"\.\d+", lambda m: f".{block_index}", self.bias_name, count=1)
            self.bias = self.bias_cuda_buffer.copy_(destination[bias_name], non_blocking=True)
        else:
            self.bias = None

    def state_dict(self, destination=None):
        if destination is None:
            destination = {}
        destination[self.weight_name] = self.pin_weight if hasattr(self, "pin_weight") else self.weight
        if self.bias_name is not None:
            destination[self.bias_name] = self.pin_bias if hasattr(self, "pin_bias") else self.bias

        return destination

    def get_weight(self, tensor, dtype):
        if tensor is None:
            return

        device = tensor.device
        weight = gguf_dequantize_tensor(tensor, dtype)
        # prevent propagating custom tensor class
        if isinstance(weight, GGMLTensor):
            weight = torch.Tensor(weight)

        return weight

    def cast_bias_weight(self, input_tensor=None, dtype=None, device=None, bias_dtype=None):
        if input_tensor is not None:
            if dtype is None:
                dtype = getattr(input_tensor, "dtype", torch.float32)

        bias = None
        if self.bias is not None:
            bias = self.get_weight(self.bias, dtype)

        weight = self.get_weight(self.weight, dtype)
        return weight, bias

    def apply(self, input_tensor):
        weight, bias = self.cast_bias_weight(input_tensor)
        return torch.nn.functional.linear(input_tensor, weight, bias)


@MM_WEIGHT_REGISTER("gguf-BF16")
class MMWeightGGUFBF16(MMWeightGGUFTemplate):
    qtype = gguf.GGMLQuantizationType.BF16


@MM_WEIGHT_REGISTER("gguf-Q8_0")
class MMWeightGGUFQ80(MMWeightGGUFTemplate):
    qtype = gguf.GGMLQuantizationType.Q8_0


@MM_WEIGHT_REGISTER("gguf-Q6_K")
class MMWeightGGUFQ6K(MMWeightGGUFTemplate):
    qtype = gguf.GGMLQuantizationType.Q6_K


@MM_WEIGHT_REGISTER("gguf-Q5_K_S")
class MMWeightGGUFQ5KS(MMWeightGGUFTemplate):
    qtype = gguf.GGMLQuantizationType.Q6_K


@MM_WEIGHT_REGISTER("gguf-Q5_K_M")
class MMWeightGGUFQ5KM(MMWeightGGUFTemplate):
    qtype = gguf.GGMLQuantizationType.Q6_K


@MM_WEIGHT_REGISTER("gguf-Q5_1")
class MMWeightGGUFQ51(MMWeightGGUFTemplate):
    qtype = gguf.GGMLQuantizationType.Q5_1


@MM_WEIGHT_REGISTER("gguf-Q5_0")
class MMWeightGGUFQ50(MMWeightGGUFTemplate):
    qtype = gguf.GGMLQuantizationType.Q5_0


@MM_WEIGHT_REGISTER("gguf-Q4_K_M")
class MMWeightGGUFQ4KM(MMWeightGGUFTemplate):
    qtype = gguf.GGMLQuantizationType.Q5_0


@MM_WEIGHT_REGISTER("gguf-Q4_K_S")
class MMWeightGGUFQ4KS(MMWeightGGUFTemplate):
    qtype = gguf.GGMLQuantizationType.Q4_K


@MM_WEIGHT_REGISTER("gguf-Q4_1")
class MMWeightGGUFQ41(MMWeightGGUFTemplate):
    qtype = gguf.GGMLQuantizationType.Q4_1


@MM_WEIGHT_REGISTER("gguf-Q4_0")
class MMWeightGGUFQ40(MMWeightGGUFTemplate):
    qtype = gguf.GGMLQuantizationType.Q4_0


@MM_WEIGHT_REGISTER("gguf-Q3_K_M")
class MMWeightGGUFQ3KM(MMWeightGGUFTemplate):
    qtype = gguf.GGMLQuantizationType.Q3_K


@MM_WEIGHT_REGISTER("gguf-Q3_K_S")
class MMWeightGGUFQ3KS(MMWeightGGUFTemplate):
    qtype = gguf.GGMLQuantizationType.Q2_K
1146

1147

1148
@MM_WEIGHT_REGISTER("int4-g128-marlin")
1149
1150
1151
1152
1153
1154
1155
1156
class MMWeightWint4group128Marlin(MMWeightQuantTemplate):
    """
    Name: "W-int4-group128-sym-Marlin

    Quant int4 x FP16:
        Weight: int4 pergroup sym
        Kernel: Marlin
    """
1157

1158
1159
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, lazy_load, lazy_load_file, is_post_adapter)
1160
1161
1162
1163
1164
1165
        self.load_func = self.load_quantized

    def load(self, weight_dict):
        assert not self.lazy_load
        self.load_func(weight_dict)
        self.workspace = weight_dict[f"{self.weight_name}_workspace"]
gushiqiao's avatar
gushiqiao committed
1166

1167
        if self.bias_name is not None:
gushiqiao's avatar
gushiqiao committed
1168
1169
            bias_shape = weight_dict[self.bias_name].shape
            bias_dtype = weight_dict[self.bias_name].dtype
1170
1171
            self.bias = torch.empty(bias_shape, pin_memory=True, dtype=bias_dtype)
            self.bias.copy_(weight_dict[self.bias_name])
1172
1173
        else:
            self.bias = None
1174

1175
1176
1177
1178
1179
1180
    def apply(self, input_tensor):
        output_tensor = torch.empty(input_tensor.shape[:-1] + (self.weight_scale.shape[1],), dtype=input_tensor.dtype, device=input_tensor.device)
        marlin_cuda_quant.mul(input_tensor, self.weight, output_tensor, self.weight_scale.half(), self.workspace, -1, -1, -1, -1)
        if hasattr(self, "bias") and self.bias is not None:
            output_tensor.add_(self.bias)
        return output_tensor
Kane's avatar
Kane committed
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193


@MM_WEIGHT_REGISTER("int8-tmo")
class MMWeightWint8channelAint8channeldynamicMlu(MMWeightQuantTemplate):
    """
    Name: W-int8-channel-sym-A-int8-channel-sym-dynamic-Mlu

    Quant MM:
        Weight: int8 perchannel sym
        Act: int8 perchannel dynamic sym
        Kernel: mlu
    """

Kane's avatar
Kane committed
1194
1195
    def __init__(self, weight_name, bias_name, create_cuda_buffer=False, lazy_load=False, lazy_load_file=None, is_post_adapter=False):
        super().__init__(weight_name, bias_name, create_cuda_buffer, lazy_load, lazy_load_file, is_post_adapter)
Kane's avatar
Kane committed
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
        self.load_func = self.load_int8_perchannel_sym
        self.weight_need_transpose = False
        self.act_quant_func = self.act_quant_int8_perchannel_sym_tmo

    def act_quant_int8_perchannel_sym_tmo(self, x):
        input_tensor_quant, input_tensor_scale = tmo.scaled_quantize(x)
        return input_tensor_quant, input_tensor_scale

    def apply(self, input_tensor):
        dtype = input_tensor.dtype
        input_tensor_quant, input_tensor_scale = self.act_quant_func(input_tensor)
Kane's avatar
Kane committed
1207
1208
1209
        output_tensor = tmo.scaled_matmul(
            input_tensor_quant, self.weight.contiguous(), input_tensor_scale, self.weight_scale.squeeze(-1), bias=self.bias if self.bias is not None else None, output_dtype=dtype, use_hp_active=True
        )
Kane's avatar
Kane committed
1210
        return output_tensor