Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
SIYIXNI
vllm
Commits
06e9ebeb
"src/sequence.cpp" did not exist on "f7358701f2ee065ca78492ed51b2aaa90e9135ca"
Unverified
Commit
06e9ebeb
authored
Nov 18, 2023
by
Woosuk Kwon
Committed by
GitHub
Nov 18, 2023
Browse files
Add instructions to install vLLM+cu118 (#1717)
parent
c5f7740d
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
19 additions
and
5 deletions
+19
-5
docs/source/getting_started/installation.rst
docs/source/getting_started/installation.rst
+19
-5
No files found.
docs/source/getting_started/installation.rst
View file @
06e9ebeb
...
@@ -3,14 +3,14 @@
...
@@ -3,14 +3,14 @@
Installation
Installation
============
============
vLLM is a Python library that also contains pre-compiled C++ and CUDA (1
1.8
) binaries.
vLLM is a Python library that also contains pre-compiled C++ and CUDA (1
2.1
) binaries.
Requirements
Requirements
------------
------------
* OS: Linux
* OS: Linux
* Python: 3.8 -- 3.11
* Python: 3.8 -- 3.11
* GPU: compute capability 7.0 or higher (e.g., V100, T4, RTX20xx, A100, L4, etc.)
* GPU: compute capability 7.0 or higher (e.g., V100, T4, RTX20xx, A100, L4,
H100,
etc.)
Install with pip
Install with pip
----------------
----------------
...
@@ -23,9 +23,24 @@ You can install vLLM using pip:
...
@@ -23,9 +23,24 @@ You can install vLLM using pip:
$ conda create -n myenv python=3.8 -y
$ conda create -n myenv python=3.8 -y
$ conda activate myenv
$ conda activate myenv
$ # Install vLLM.
$ # Install vLLM
with CUDA 12.1
.
$ pip install vllm
$ pip install vllm
.. note::
As of now, vLLM's binaries are compiled on CUDA 12.1 by default.
However, you can install vLLM with CUDA 11.8 by running:
.. code-block:: console
$ # Install vLLM with CUDA 11.8.
$ # Replace `cp310` with your Python version (e.g., `cp38`, `cp39`, `cp311`).
$ pip install https://github.com/vllm-project/vllm/releases/download/v0.2.2/vllm-0.2.2+cu118-cp310-cp310-manylinux1_x86_64.whl
$ # Re-install PyTorch with CUDA 11.8.
$ pip uninstall torch -y
$ pip install torch --upgrade --index-url https://download.pytorch.org/whl/cu118
.. _build_from_source:
.. _build_from_source:
...
@@ -45,6 +60,5 @@ You can also build and install vLLM from source:
...
@@ -45,6 +60,5 @@ You can also build and install vLLM from source:
.. code-block:: console
.. code-block:: console
$ # Pull the Docker image with CUDA 11.8.
$ # Use `--ipc=host` to make sure the shared memory is large enough.
$ # Use `--ipc=host` to make sure the shared memory is large enough.
$ docker run --gpus all -it --rm --ipc=host nvcr.io/nvidia/pytorch:2
2
.1
2
-py3
$ docker run --gpus all -it --rm --ipc=host nvcr.io/nvidia/pytorch:2
3
.1
0
-py3
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment