import bz2 import contextlib import csv import io import itertools import json import os import pathlib import pickle import random import shutil import string import unittest import xml.etree.ElementTree as ET import zipfile import datasets_utils import numpy as np import PIL import pytest import torch import torch.nn.functional as F from torchvision import datasets class STL10TestCase(datasets_utils.ImageDatasetTestCase): DATASET_CLASS = datasets.STL10 ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(split=("train", "test", "unlabeled", "train+unlabeled")) @staticmethod def _make_binary_file(num_elements, root, name): file_name = os.path.join(root, name) np.zeros(num_elements, dtype=np.uint8).tofile(file_name) @staticmethod def _make_image_file(num_images, root, name, num_channels=3, height=96, width=96): STL10TestCase._make_binary_file(num_images * num_channels * height * width, root, name) @staticmethod def _make_label_file(num_images, root, name): STL10TestCase._make_binary_file(num_images, root, name) @staticmethod def _make_class_names_file(root, name="class_names.txt"): with open(os.path.join(root, name), "w") as fh: for cname in ("airplane", "bird"): fh.write(f"{cname}\n") @staticmethod def _make_fold_indices_file(root): num_folds = 10 offset = 0 with open(os.path.join(root, "fold_indices.txt"), "w") as fh: for fold in range(num_folds): line = " ".join([str(idx) for idx in range(offset, offset + fold + 1)]) fh.write(f"{line}\n") offset += fold + 1 return tuple(range(1, num_folds + 1)) @staticmethod def _make_train_files(root, num_unlabeled_images=1): num_images_in_fold = STL10TestCase._make_fold_indices_file(root) num_train_images = sum(num_images_in_fold) STL10TestCase._make_image_file(num_train_images, root, "train_X.bin") STL10TestCase._make_label_file(num_train_images, root, "train_y.bin") STL10TestCase._make_image_file(1, root, "unlabeled_X.bin") return dict(train=num_train_images, unlabeled=num_unlabeled_images) @staticmethod def _make_test_files(root, num_images=2): STL10TestCase._make_image_file(num_images, root, "test_X.bin") STL10TestCase._make_label_file(num_images, root, "test_y.bin") return dict(test=num_images) def inject_fake_data(self, tmpdir, config): root_folder = os.path.join(tmpdir, "stl10_binary") os.mkdir(root_folder) num_images_in_split = self._make_train_files(root_folder) num_images_in_split.update(self._make_test_files(root_folder)) self._make_class_names_file(root_folder) return sum(num_images_in_split[part] for part in config["split"].split("+")) def test_folds(self): for fold in range(10): with self.create_dataset(split="train", folds=fold) as (dataset, _): assert len(dataset) == fold + 1 def test_unlabeled(self): with self.create_dataset(split="unlabeled") as (dataset, _): labels = [dataset[idx][1] for idx in range(len(dataset))] assert all(label == -1 for label in labels) def test_invalid_folds1(self): with pytest.raises(ValueError): with self.create_dataset(folds=10): pass def test_invalid_folds2(self): with pytest.raises(ValueError): with self.create_dataset(folds="0"): pass class Caltech101TestCase(datasets_utils.ImageDatasetTestCase): DATASET_CLASS = datasets.Caltech101 FEATURE_TYPES = (PIL.Image.Image, (int, np.ndarray, tuple)) ADDITIONAL_CONFIGS = datasets_utils.combinations_grid( target_type=("category", "annotation", ["category", "annotation"]) ) REQUIRED_PACKAGES = ("scipy",) def inject_fake_data(self, tmpdir, config): root = pathlib.Path(tmpdir) / "caltech101" images = root / "101_ObjectCategories" annotations = root / "Annotations" categories = (("Faces", "Faces_2"), ("helicopter", "helicopter"), ("ying_yang", "ying_yang")) num_images_per_category = 2 for image_category, annotation_category in categories: datasets_utils.create_image_folder( root=images, name=image_category, file_name_fn=lambda idx: f"image_{idx + 1:04d}.jpg", num_examples=num_images_per_category, ) self._create_annotation_folder( root=annotations, name=annotation_category, file_name_fn=lambda idx: f"annotation_{idx + 1:04d}.mat", num_examples=num_images_per_category, ) # This is included in the original archive, but is removed by the dataset. Thus, an empty directory suffices. os.makedirs(images / "BACKGROUND_Google") return num_images_per_category * len(categories) def _create_annotation_folder(self, root, name, file_name_fn, num_examples): root = pathlib.Path(root) / name os.makedirs(root) for idx in range(num_examples): self._create_annotation_file(root, file_name_fn(idx)) def _create_annotation_file(self, root, name): mdict = dict(obj_contour=torch.rand((2, torch.randint(3, 6, size=())), dtype=torch.float64).numpy()) datasets_utils.lazy_importer.scipy.io.savemat(str(pathlib.Path(root) / name), mdict) def test_combined_targets(self): target_types = ["category", "annotation"] individual_targets = [] for target_type in target_types: with self.create_dataset(target_type=target_type) as (dataset, _): _, target = dataset[0] individual_targets.append(target) with self.create_dataset(target_type=target_types) as (dataset, _): _, combined_targets = dataset[0] actual = len(individual_targets) expected = len(combined_targets) assert ( actual == expected ), "The number of the returned combined targets does not match the the number targets if requested " f"individually: {actual} != {expected}", for target_type, combined_target, individual_target in zip(target_types, combined_targets, individual_targets): with self.subTest(target_type=target_type): actual = type(combined_target) expected = type(individual_target) assert ( actual is expected ), "Type of the combined target does not match the type of the corresponding individual target: " f"{actual} is not {expected}", class Caltech256TestCase(datasets_utils.ImageDatasetTestCase): DATASET_CLASS = datasets.Caltech256 def inject_fake_data(self, tmpdir, config): tmpdir = pathlib.Path(tmpdir) / "caltech256" / "256_ObjectCategories" categories = ((1, "ak47"), (127, "laptop-101"), (257, "clutter")) num_images_per_category = 2 for idx, category in categories: datasets_utils.create_image_folder( tmpdir, name=f"{idx:03d}.{category}", file_name_fn=lambda image_idx: f"{idx:03d}_{image_idx + 1:04d}.jpg", num_examples=num_images_per_category, ) return num_images_per_category * len(categories) class WIDERFaceTestCase(datasets_utils.ImageDatasetTestCase): DATASET_CLASS = datasets.WIDERFace FEATURE_TYPES = (PIL.Image.Image, (dict, type(None))) # test split returns None as target ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(split=("train", "val", "test")) def inject_fake_data(self, tmpdir, config): widerface_dir = pathlib.Path(tmpdir) / "widerface" annotations_dir = widerface_dir / "wider_face_split" os.makedirs(annotations_dir) split_to_idx = split_to_num_examples = { "train": 1, "val": 2, "test": 3, } # We need to create all folders regardless of the split in config for split in ("train", "val", "test"): split_idx = split_to_idx[split] num_examples = split_to_num_examples[split] datasets_utils.create_image_folder( root=tmpdir, name=widerface_dir / f"WIDER_{split}" / "images" / "0--Parade", file_name_fn=lambda image_idx: f"0_Parade_marchingband_1_{split_idx + image_idx}.jpg", num_examples=num_examples, ) annotation_file_name = { "train": annotations_dir / "wider_face_train_bbx_gt.txt", "val": annotations_dir / "wider_face_val_bbx_gt.txt", "test": annotations_dir / "wider_face_test_filelist.txt", }[split] annotation_content = { "train": "".join( f"0--Parade/0_Parade_marchingband_1_{split_idx + image_idx}.jpg\n1\n449 330 122 149 0 0 0 0 0 0\n" for image_idx in range(num_examples) ), "val": "".join( f"0--Parade/0_Parade_marchingband_1_{split_idx + image_idx}.jpg\n1\n501 160 285 443 0 0 0 0 0 0\n" for image_idx in range(num_examples) ), "test": "".join( f"0--Parade/0_Parade_marchingband_1_{split_idx + image_idx}.jpg\n" for image_idx in range(num_examples) ), }[split] with open(annotation_file_name, "w") as annotation_file: annotation_file.write(annotation_content) return split_to_num_examples[config["split"]] class CityScapesTestCase(datasets_utils.ImageDatasetTestCase): DATASET_CLASS = datasets.Cityscapes TARGET_TYPES = ( "instance", "semantic", "polygon", "color", ) ADDITIONAL_CONFIGS = ( *datasets_utils.combinations_grid(mode=("fine",), split=("train", "test", "val"), target_type=TARGET_TYPES), *datasets_utils.combinations_grid( mode=("coarse",), split=("train", "train_extra", "val"), target_type=TARGET_TYPES, ), ) FEATURE_TYPES = (PIL.Image.Image, (dict, PIL.Image.Image)) def inject_fake_data(self, tmpdir, config): tmpdir = pathlib.Path(tmpdir) mode_to_splits = { "Coarse": ["train", "train_extra", "val"], "Fine": ["train", "test", "val"], } if config["split"] == "train": # just for coverage of the number of samples cities = ["bochum", "bremen"] else: cities = ["bochum"] polygon_target = { "imgHeight": 1024, "imgWidth": 2048, "objects": [ { "label": "sky", "polygon": [ [1241, 0], [1234, 156], [1478, 197], [1611, 172], [1606, 0], ], }, { "label": "road", "polygon": [ [0, 448], [1331, 274], [1473, 265], [2047, 605], [2047, 1023], [0, 1023], ], }, ], } for mode in ["Coarse", "Fine"]: gt_dir = tmpdir / f"gt{mode}" for split in mode_to_splits[mode]: for city in cities: def make_image(name, size=10): datasets_utils.create_image_folder( root=gt_dir / split, name=city, file_name_fn=lambda _: name, size=size, num_examples=1, ) make_image(f"{city}_000000_000000_gt{mode}_instanceIds.png") make_image(f"{city}_000000_000000_gt{mode}_labelIds.png") make_image(f"{city}_000000_000000_gt{mode}_color.png", size=(4, 10, 10)) polygon_target_name = gt_dir / split / city / f"{city}_000000_000000_gt{mode}_polygons.json" with open(polygon_target_name, "w") as outfile: json.dump(polygon_target, outfile) # Create leftImg8bit folder for split in ["test", "train_extra", "train", "val"]: for city in cities: datasets_utils.create_image_folder( root=tmpdir / "leftImg8bit" / split, name=city, file_name_fn=lambda _: f"{city}_000000_000000_leftImg8bit.png", num_examples=1, ) info = {"num_examples": len(cities)} if config["target_type"] == "polygon": info["expected_polygon_target"] = polygon_target return info def test_combined_targets(self): target_types = ["semantic", "polygon", "color"] with self.create_dataset(target_type=target_types) as (dataset, _): output = dataset[0] assert isinstance(output, tuple) assert len(output) == 2 assert isinstance(output[0], PIL.Image.Image) assert isinstance(output[1], tuple) assert len(output[1]) == 3 assert isinstance(output[1][0], PIL.Image.Image) # semantic assert isinstance(output[1][1], dict) # polygon assert isinstance(output[1][2], PIL.Image.Image) # color def test_feature_types_target_color(self): with self.create_dataset(target_type="color") as (dataset, _): color_img, color_target = dataset[0] assert isinstance(color_img, PIL.Image.Image) assert np.array(color_target).shape[2] == 4 def test_feature_types_target_polygon(self): with self.create_dataset(target_type="polygon") as (dataset, info): polygon_img, polygon_target = dataset[0] assert isinstance(polygon_img, PIL.Image.Image) (polygon_target, info["expected_polygon_target"]) class ImageNetTestCase(datasets_utils.ImageDatasetTestCase): DATASET_CLASS = datasets.ImageNet REQUIRED_PACKAGES = ("scipy",) ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(split=("train", "val")) def inject_fake_data(self, tmpdir, config): tmpdir = pathlib.Path(tmpdir) wnid = "n01234567" if config["split"] == "train": num_examples = 3 datasets_utils.create_image_folder( root=tmpdir, name=tmpdir / "train" / wnid / wnid, file_name_fn=lambda image_idx: f"{wnid}_{image_idx}.JPEG", num_examples=num_examples, ) else: num_examples = 1 datasets_utils.create_image_folder( root=tmpdir, name=tmpdir / "val" / wnid, file_name_fn=lambda image_ifx: "ILSVRC2012_val_0000000{image_idx}.JPEG", num_examples=num_examples, ) wnid_to_classes = {wnid: [1]} torch.save((wnid_to_classes, None), tmpdir / "meta.bin") return num_examples class CIFAR10TestCase(datasets_utils.ImageDatasetTestCase): DATASET_CLASS = datasets.CIFAR10 ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(train=(True, False)) _VERSION_CONFIG = dict( base_folder="cifar-10-batches-py", train_files=tuple(f"data_batch_{idx}" for idx in range(1, 6)), test_files=("test_batch",), labels_key="labels", meta_file="batches.meta", num_categories=10, categories_key="label_names", ) def inject_fake_data(self, tmpdir, config): tmpdir = pathlib.Path(tmpdir) / self._VERSION_CONFIG["base_folder"] os.makedirs(tmpdir) num_images_per_file = 1 for name in itertools.chain(self._VERSION_CONFIG["train_files"], self._VERSION_CONFIG["test_files"]): self._create_batch_file(tmpdir, name, num_images_per_file) categories = self._create_meta_file(tmpdir) return dict( num_examples=num_images_per_file * len(self._VERSION_CONFIG["train_files"] if config["train"] else self._VERSION_CONFIG["test_files"]), categories=categories, ) def _create_batch_file(self, root, name, num_images): np_rng = np.random.RandomState(0) data = datasets_utils.create_image_or_video_tensor((num_images, 32 * 32 * 3)) labels = np_rng.randint(0, self._VERSION_CONFIG["num_categories"], size=num_images).tolist() self._create_binary_file(root, name, {"data": data, self._VERSION_CONFIG["labels_key"]: labels}) def _create_meta_file(self, root): categories = [ f"{idx:0{len(str(self._VERSION_CONFIG['num_categories'] - 1))}d}" for idx in range(self._VERSION_CONFIG["num_categories"]) ] self._create_binary_file( root, self._VERSION_CONFIG["meta_file"], {self._VERSION_CONFIG["categories_key"]: categories} ) return categories def _create_binary_file(self, root, name, content): with open(pathlib.Path(root) / name, "wb") as fh: pickle.dump(content, fh) def test_class_to_idx(self): with self.create_dataset() as (dataset, info): expected = {category: label for label, category in enumerate(info["categories"])} actual = dataset.class_to_idx assert actual == expected class CIFAR100(CIFAR10TestCase): DATASET_CLASS = datasets.CIFAR100 _VERSION_CONFIG = dict( base_folder="cifar-100-python", train_files=("train",), test_files=("test",), labels_key="fine_labels", meta_file="meta", num_categories=100, categories_key="fine_label_names", ) class CelebATestCase(datasets_utils.ImageDatasetTestCase): DATASET_CLASS = datasets.CelebA FEATURE_TYPES = (PIL.Image.Image, (torch.Tensor, int, tuple, type(None))) ADDITIONAL_CONFIGS = datasets_utils.combinations_grid( split=("train", "valid", "test", "all"), target_type=("attr", "identity", "bbox", "landmarks", ["attr", "identity"]), ) _SPLIT_TO_IDX = dict(train=0, valid=1, test=2) def inject_fake_data(self, tmpdir, config): base_folder = pathlib.Path(tmpdir) / "celeba" os.makedirs(base_folder) num_images, num_images_per_split = self._create_split_txt(base_folder) datasets_utils.create_image_folder( base_folder, "img_align_celeba", lambda idx: f"{idx + 1:06d}.jpg", num_images ) attr_names = self._create_attr_txt(base_folder, num_images) self._create_identity_txt(base_folder, num_images) self._create_bbox_txt(base_folder, num_images) self._create_landmarks_txt(base_folder, num_images) return dict(num_examples=num_images_per_split[config["split"]], attr_names=attr_names) def _create_split_txt(self, root): num_images_per_split = dict(train=4, valid=3, test=2) data = [ [self._SPLIT_TO_IDX[split]] for split, num_images in num_images_per_split.items() for _ in range(num_images) ] self._create_txt(root, "list_eval_partition.txt", data) num_images_per_split["all"] = num_images = sum(num_images_per_split.values()) return num_images, num_images_per_split def _create_attr_txt(self, root, num_images): header = ("5_o_Clock_Shadow", "Young") data = torch.rand((num_images, len(header))).ge(0.5).int().mul(2).sub(1).tolist() self._create_txt(root, "list_attr_celeba.txt", data, header=header, add_num_examples=True) return header def _create_identity_txt(self, root, num_images): data = torch.randint(1, 4, size=(num_images, 1)).tolist() self._create_txt(root, "identity_CelebA.txt", data) def _create_bbox_txt(self, root, num_images): header = ("x_1", "y_1", "width", "height") data = torch.randint(10, size=(num_images, len(header))).tolist() self._create_txt( root, "list_bbox_celeba.txt", data, header=header, add_num_examples=True, add_image_id_to_header=True ) def _create_landmarks_txt(self, root, num_images): header = ("lefteye_x", "rightmouth_y") data = torch.randint(10, size=(num_images, len(header))).tolist() self._create_txt(root, "list_landmarks_align_celeba.txt", data, header=header, add_num_examples=True) def _create_txt(self, root, name, data, header=None, add_num_examples=False, add_image_id_to_header=False): with open(pathlib.Path(root) / name, "w") as fh: if add_num_examples: fh.write(f"{len(data)}\n") if header: if add_image_id_to_header: header = ("image_id", *header) fh.write(f"{' '.join(header)}\n") for idx, line in enumerate(data, 1): fh.write(f"{' '.join((f'{idx:06d}.jpg', *[str(value) for value in line]))}\n") def test_combined_targets(self): target_types = ["attr", "identity", "bbox", "landmarks"] individual_targets = [] for target_type in target_types: with self.create_dataset(target_type=target_type) as (dataset, _): _, target = dataset[0] individual_targets.append(target) with self.create_dataset(target_type=target_types) as (dataset, _): _, combined_targets = dataset[0] actual = len(individual_targets) expected = len(combined_targets) assert ( actual == expected ), "The number of the returned combined targets does not match the the number targets if requested " f"individually: {actual} != {expected}", for target_type, combined_target, individual_target in zip(target_types, combined_targets, individual_targets): with self.subTest(target_type=target_type): actual = type(combined_target) expected = type(individual_target) assert ( actual is expected ), "Type of the combined target does not match the type of the corresponding individual target: " f"{actual} is not {expected}", def test_no_target(self): with self.create_dataset(target_type=[]) as (dataset, _): _, target = dataset[0] assert target is None def test_attr_names(self): with self.create_dataset() as (dataset, info): assert tuple(dataset.attr_names) == info["attr_names"] def test_images_names_split(self): with self.create_dataset(split="all") as (dataset, _): all_imgs_names = set(dataset.filename) merged_imgs_names = set() for split in ["train", "valid", "test"]: with self.create_dataset(split=split) as (dataset, _): merged_imgs_names.update(dataset.filename) assert merged_imgs_names == all_imgs_names class VOCSegmentationTestCase(datasets_utils.ImageDatasetTestCase): DATASET_CLASS = datasets.VOCSegmentation FEATURE_TYPES = (PIL.Image.Image, PIL.Image.Image) ADDITIONAL_CONFIGS = ( *datasets_utils.combinations_grid( year=[f"20{year:02d}" for year in range(7, 13)], image_set=("train", "val", "trainval") ), dict(year="2007", image_set="test"), dict(year="2007-test", image_set="test"), ) def inject_fake_data(self, tmpdir, config): year, is_test_set = ( ("2007", True) if config["year"] == "2007-test" or config["image_set"] == "test" else (config["year"], False) ) image_set = config["image_set"] base_dir = pathlib.Path(tmpdir) if year == "2011": base_dir /= "TrainVal" base_dir = base_dir / "VOCdevkit" / f"VOC{year}" os.makedirs(base_dir) num_images, num_images_per_image_set = self._create_image_set_files(base_dir, "ImageSets", is_test_set) datasets_utils.create_image_folder(base_dir, "JPEGImages", lambda idx: f"{idx:06d}.jpg", num_images) datasets_utils.create_image_folder(base_dir, "SegmentationClass", lambda idx: f"{idx:06d}.png", num_images) annotation = self._create_annotation_files(base_dir, "Annotations", num_images) return dict(num_examples=num_images_per_image_set[image_set], annotation=annotation) def _create_image_set_files(self, root, name, is_test_set): root = pathlib.Path(root) / name src = pathlib.Path(root) / "Main" os.makedirs(src, exist_ok=True) idcs = dict(train=(0, 1, 2), val=(3, 4), test=(5,)) idcs["trainval"] = (*idcs["train"], *idcs["val"]) for image_set in ("test",) if is_test_set else ("train", "val", "trainval"): self._create_image_set_file(src, image_set, idcs[image_set]) shutil.copytree(src, root / "Segmentation") num_images = max(itertools.chain(*idcs.values())) + 1 num_images_per_image_set = {image_set: len(idcs_) for image_set, idcs_ in idcs.items()} return num_images, num_images_per_image_set def _create_image_set_file(self, root, image_set, idcs): with open(pathlib.Path(root) / f"{image_set}.txt", "w") as fh: fh.writelines([f"{idx:06d}\n" for idx in idcs]) def _create_annotation_files(self, root, name, num_images): root = pathlib.Path(root) / name os.makedirs(root) for idx in range(num_images): annotation = self._create_annotation_file(root, f"{idx:06d}.xml") return annotation def _create_annotation_file(self, root, name): def add_child(parent, name, text=None): child = ET.SubElement(parent, name) child.text = text return child def add_name(obj, name="dog"): add_child(obj, "name", name) return name def add_bndbox(obj, bndbox=None): if bndbox is None: bndbox = {"xmin": "1", "xmax": "2", "ymin": "3", "ymax": "4"} obj = add_child(obj, "bndbox") for name, text in bndbox.items(): add_child(obj, name, text) return bndbox annotation = ET.Element("annotation") obj = add_child(annotation, "object") data = dict(name=add_name(obj), bndbox=add_bndbox(obj)) with open(pathlib.Path(root) / name, "wb") as fh: fh.write(ET.tostring(annotation)) return data class VOCDetectionTestCase(VOCSegmentationTestCase): DATASET_CLASS = datasets.VOCDetection FEATURE_TYPES = (PIL.Image.Image, dict) def test_annotations(self): with self.create_dataset() as (dataset, info): _, target = dataset[0] assert "annotation" in target annotation = target["annotation"] assert "object" in annotation objects = annotation["object"] assert len(objects) == 1 object = objects[0] assert object == info["annotation"] class CocoDetectionTestCase(datasets_utils.ImageDatasetTestCase): DATASET_CLASS = datasets.CocoDetection FEATURE_TYPES = (PIL.Image.Image, list) REQUIRED_PACKAGES = ("pycocotools",) _IMAGE_FOLDER = "images" _ANNOTATIONS_FOLDER = "annotations" _ANNOTATIONS_FILE = "annotations.json" def dataset_args(self, tmpdir, config): tmpdir = pathlib.Path(tmpdir) root = tmpdir / self._IMAGE_FOLDER annotation_file = tmpdir / self._ANNOTATIONS_FOLDER / self._ANNOTATIONS_FILE return root, annotation_file def inject_fake_data(self, tmpdir, config): tmpdir = pathlib.Path(tmpdir) num_images = 3 num_annotations_per_image = 2 files = datasets_utils.create_image_folder( tmpdir, name=self._IMAGE_FOLDER, file_name_fn=lambda idx: f"{idx:012d}.jpg", num_examples=num_images ) file_names = [file.relative_to(tmpdir / self._IMAGE_FOLDER) for file in files] annotation_folder = tmpdir / self._ANNOTATIONS_FOLDER os.makedirs(annotation_folder) info = self._create_annotation_file( annotation_folder, self._ANNOTATIONS_FILE, file_names, num_annotations_per_image ) info["num_examples"] = num_images return info def _create_annotation_file(self, root, name, file_names, num_annotations_per_image): image_ids = [int(file_name.stem) for file_name in file_names] images = [dict(file_name=str(file_name), id=id) for file_name, id in zip(file_names, image_ids)] annotations, info = self._create_annotations(image_ids, num_annotations_per_image) self._create_json(root, name, dict(images=images, annotations=annotations)) return info def _create_annotations(self, image_ids, num_annotations_per_image): annotations = datasets_utils.combinations_grid( image_id=image_ids, bbox=([1.0, 2.0, 3.0, 4.0],) * num_annotations_per_image ) for id, annotation in enumerate(annotations): annotation["id"] = id return annotations, dict() def _create_json(self, root, name, content): file = pathlib.Path(root) / name with open(file, "w") as fh: json.dump(content, fh) return file class CocoCaptionsTestCase(CocoDetectionTestCase): DATASET_CLASS = datasets.CocoCaptions def _create_annotations(self, image_ids, num_annotations_per_image): captions = [str(idx) for idx in range(num_annotations_per_image)] annotations = datasets_utils.combinations_grid(image_id=image_ids, caption=captions) for id, annotation in enumerate(annotations): annotation["id"] = id return annotations, dict(captions=captions) def test_captions(self): with self.create_dataset() as (dataset, info): _, captions = dataset[0] assert tuple(captions) == tuple(info["captions"]) class UCF101TestCase(datasets_utils.VideoDatasetTestCase): DATASET_CLASS = datasets.UCF101 ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(fold=(1, 2, 3), train=(True, False)) _VIDEO_FOLDER = "videos" _ANNOTATIONS_FOLDER = "annotations" def dataset_args(self, tmpdir, config): tmpdir = pathlib.Path(tmpdir) root = tmpdir / self._VIDEO_FOLDER annotation_path = tmpdir / self._ANNOTATIONS_FOLDER return root, annotation_path def inject_fake_data(self, tmpdir, config): tmpdir = pathlib.Path(tmpdir) video_folder = tmpdir / self._VIDEO_FOLDER os.makedirs(video_folder) video_files = self._create_videos(video_folder) annotations_folder = tmpdir / self._ANNOTATIONS_FOLDER os.makedirs(annotations_folder) num_examples = self._create_annotation_files(annotations_folder, video_files, config["fold"], config["train"]) return num_examples def _create_videos(self, root, num_examples_per_class=3): def file_name_fn(cls, idx, clips_per_group=2): return f"v_{cls}_g{(idx // clips_per_group) + 1:02d}_c{(idx % clips_per_group) + 1:02d}.avi" video_files = [ datasets_utils.create_video_folder(root, cls, lambda idx: file_name_fn(cls, idx), num_examples_per_class) for cls in ("ApplyEyeMakeup", "YoYo") ] return [path.relative_to(root) for path in itertools.chain(*video_files)] def _create_annotation_files(self, root, video_files, fold, train): current_videos = random.sample(video_files, random.randrange(1, len(video_files) - 1)) current_annotation = self._annotation_file_name(fold, train) self._create_annotation_file(root, current_annotation, current_videos) other_videos = set(video_files) - set(current_videos) other_annotations = [ self._annotation_file_name(fold, train) for fold, train in itertools.product((1, 2, 3), (True, False)) ] other_annotations.remove(current_annotation) for name in other_annotations: self._create_annotation_file(root, name, other_videos) return len(current_videos) def _annotation_file_name(self, fold, train): return f"{'train' if train else 'test'}list{fold:02d}.txt" def _create_annotation_file(self, root, name, video_files): with open(pathlib.Path(root) / name, "w") as fh: fh.writelines(f"{str(file).replace(os.sep, '/')}\n" for file in sorted(video_files)) class LSUNTestCase(datasets_utils.ImageDatasetTestCase): DATASET_CLASS = datasets.LSUN REQUIRED_PACKAGES = ("lmdb",) ADDITIONAL_CONFIGS = datasets_utils.combinations_grid( classes=("train", "test", "val", ["bedroom_train", "church_outdoor_train"]) ) _CATEGORIES = ( "bedroom", "bridge", "church_outdoor", "classroom", "conference_room", "dining_room", "kitchen", "living_room", "restaurant", "tower", ) def inject_fake_data(self, tmpdir, config): root = pathlib.Path(tmpdir) num_images = 0 for cls in self._parse_classes(config["classes"]): num_images += self._create_lmdb(root, cls) return num_images @contextlib.contextmanager def create_dataset(self, *args, **kwargs): with super().create_dataset(*args, **kwargs) as output: yield output # Currently datasets.LSUN caches the keys in the current directory rather than in the root directory. Thus, # this creates a number of _cache_* files in the current directory that will not be removed together # with the temporary directory for file in os.listdir(os.getcwd()): if file.startswith("_cache_"): try: os.remove(file) except FileNotFoundError: # When the same test is run in parallel (in fb internal tests), a thread may remove another # thread's file. We should be able to remove the try/except when # https://github.com/pytorch/vision/issues/825 is fixed. pass def _parse_classes(self, classes): if not isinstance(classes, str): return classes split = classes if split == "test": return [split] return [f"{category}_{split}" for category in self._CATEGORIES] def _create_lmdb(self, root, cls): lmdb = datasets_utils.lazy_importer.lmdb hexdigits_lowercase = string.digits + string.ascii_lowercase[:6] folder = f"{cls}_lmdb" num_images = torch.randint(1, 4, size=()).item() format = "png" files = datasets_utils.create_image_folder(root, folder, lambda idx: f"{idx}.{format}", num_images) with lmdb.open(str(root / folder)) as env, env.begin(write=True) as txn: for file in files: key = "".join(random.choice(hexdigits_lowercase) for _ in range(40)).encode() buffer = io.BytesIO() PIL.Image.open(file).save(buffer, format) buffer.seek(0) value = buffer.read() txn.put(key, value) os.remove(file) return num_images def test_not_found_or_corrupted(self): # LSUN does not raise built-in exception, but a custom one. It is expressive enough to not 'cast' it to # RuntimeError or FileNotFoundError that are normally checked by this test. with pytest.raises(datasets_utils.lazy_importer.lmdb.Error): super().test_not_found_or_corrupted() class KineticsTestCase(datasets_utils.VideoDatasetTestCase): DATASET_CLASS = datasets.Kinetics ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(split=("train", "val"), num_classes=("400", "600", "700")) def inject_fake_data(self, tmpdir, config): classes = ("Abseiling", "Zumba") num_videos_per_class = 2 tmpdir = pathlib.Path(tmpdir) / config["split"] digits = string.ascii_letters + string.digits + "-_" for cls in classes: datasets_utils.create_video_folder( tmpdir, cls, lambda _: f"{datasets_utils.create_random_string(11, digits)}.mp4", num_videos_per_class, ) return num_videos_per_class * len(classes) class Kinetics400TestCase(datasets_utils.VideoDatasetTestCase): DATASET_CLASS = datasets.Kinetics400 def inject_fake_data(self, tmpdir, config): classes = ("Abseiling", "Zumba") num_videos_per_class = 2 digits = string.ascii_letters + string.digits + "-_" for cls in classes: datasets_utils.create_video_folder( tmpdir, cls, lambda _: f"{datasets_utils.create_random_string(11, digits)}.avi", num_videos_per_class, ) return num_videos_per_class * len(classes) class HMDB51TestCase(datasets_utils.VideoDatasetTestCase): DATASET_CLASS = datasets.HMDB51 ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(fold=(1, 2, 3), train=(True, False)) _VIDEO_FOLDER = "videos" _SPLITS_FOLDER = "splits" _CLASSES = ("brush_hair", "wave") def dataset_args(self, tmpdir, config): tmpdir = pathlib.Path(tmpdir) root = tmpdir / self._VIDEO_FOLDER annotation_path = tmpdir / self._SPLITS_FOLDER return root, annotation_path def inject_fake_data(self, tmpdir, config): tmpdir = pathlib.Path(tmpdir) video_folder = tmpdir / self._VIDEO_FOLDER os.makedirs(video_folder) video_files = self._create_videos(video_folder) splits_folder = tmpdir / self._SPLITS_FOLDER os.makedirs(splits_folder) num_examples = self._create_split_files(splits_folder, video_files, config["fold"], config["train"]) return num_examples def _create_videos(self, root, num_examples_per_class=3): def file_name_fn(cls, idx, clips_per_group=2): return f"{cls}_{(idx // clips_per_group) + 1:d}_{(idx % clips_per_group) + 1:d}.avi" return [ ( cls, datasets_utils.create_video_folder( root, cls, lambda idx: file_name_fn(cls, idx), num_examples_per_class, ), ) for cls in self._CLASSES ] def _create_split_files(self, root, video_files, fold, train): num_videos = num_train_videos = 0 for cls, videos in video_files: num_videos += len(videos) train_videos = set(random.sample(videos, random.randrange(1, len(videos) - 1))) num_train_videos += len(train_videos) with open(pathlib.Path(root) / f"{cls}_test_split{fold}.txt", "w") as fh: fh.writelines(f"{file.name} {1 if file in train_videos else 2}\n" for file in videos) return num_train_videos if train else (num_videos - num_train_videos) class OmniglotTestCase(datasets_utils.ImageDatasetTestCase): DATASET_CLASS = datasets.Omniglot ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(background=(True, False)) def inject_fake_data(self, tmpdir, config): target_folder = ( pathlib.Path(tmpdir) / "omniglot-py" / f"images_{'background' if config['background'] else 'evaluation'}" ) os.makedirs(target_folder) num_images = 0 for name in ("Alphabet_of_the_Magi", "Tifinagh"): num_images += self._create_alphabet_folder(target_folder, name) return num_images def _create_alphabet_folder(self, root, name): num_images_total = 0 for idx in range(torch.randint(1, 4, size=()).item()): num_images = torch.randint(1, 4, size=()).item() num_images_total += num_images datasets_utils.create_image_folder( root / name, f"character{idx:02d}", lambda image_idx: f"{image_idx:02d}.png", num_images ) return num_images_total class SBUTestCase(datasets_utils.ImageDatasetTestCase): DATASET_CLASS = datasets.SBU FEATURE_TYPES = (PIL.Image.Image, str) def inject_fake_data(self, tmpdir, config): num_images = 3 dataset_folder = pathlib.Path(tmpdir) / "dataset" images = datasets_utils.create_image_folder(tmpdir, "dataset", self._create_file_name, num_images) self._create_urls_txt(dataset_folder, images) self._create_captions_txt(dataset_folder, num_images) return num_images def _create_file_name(self, idx): part1 = datasets_utils.create_random_string(10, string.digits) part2 = datasets_utils.create_random_string(10, string.ascii_lowercase, string.digits[:6]) return f"{part1}_{part2}.jpg" def _create_urls_txt(self, root, images): with open(root / "SBU_captioned_photo_dataset_urls.txt", "w") as fh: for image in images: fh.write( f"http://static.flickr.com/{datasets_utils.create_random_string(4, string.digits)}/{image.name}\n" ) def _create_captions_txt(self, root, num_images): with open(root / "SBU_captioned_photo_dataset_captions.txt", "w") as fh: for _ in range(num_images): fh.write(f"{datasets_utils.create_random_string(10)}\n") class SEMEIONTestCase(datasets_utils.ImageDatasetTestCase): DATASET_CLASS = datasets.SEMEION def inject_fake_data(self, tmpdir, config): num_images = 3 images = torch.rand(num_images, 256) labels = F.one_hot(torch.randint(10, size=(num_images,))) with open(pathlib.Path(tmpdir) / "semeion.data", "w") as fh: for image, one_hot_labels in zip(images, labels): image_columns = " ".join([f"{pixel.item():.4f}" for pixel in image]) labels_columns = " ".join([str(label.item()) for label in one_hot_labels]) fh.write(f"{image_columns} {labels_columns}\n") return num_images class USPSTestCase(datasets_utils.ImageDatasetTestCase): DATASET_CLASS = datasets.USPS ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(train=(True, False)) def inject_fake_data(self, tmpdir, config): num_images = 2 if config["train"] else 1 images = torch.rand(num_images, 256) * 2 - 1 labels = torch.randint(1, 11, size=(num_images,)) with bz2.open(pathlib.Path(tmpdir) / f"usps{'.t' if not config['train'] else ''}.bz2", "w") as fh: for image, label in zip(images, labels): line = " ".join((str(label.item()), *[f"{idx}:{pixel:.6f}" for idx, pixel in enumerate(image, 1)])) fh.write(f"{line}\n".encode()) return num_images class SBDatasetTestCase(datasets_utils.ImageDatasetTestCase): DATASET_CLASS = datasets.SBDataset FEATURE_TYPES = (PIL.Image.Image, (np.ndarray, PIL.Image.Image)) REQUIRED_PACKAGES = ("scipy.io", "scipy.sparse") ADDITIONAL_CONFIGS = datasets_utils.combinations_grid( image_set=("train", "val", "train_noval"), mode=("boundaries", "segmentation") ) _NUM_CLASSES = 20 def inject_fake_data(self, tmpdir, config): num_images, num_images_per_image_set = self._create_split_files(tmpdir) sizes = self._create_target_folder(tmpdir, "cls", num_images) datasets_utils.create_image_folder( tmpdir, "img", lambda idx: f"{self._file_stem(idx)}.jpg", num_images, size=lambda idx: sizes[idx] ) return num_images_per_image_set[config["image_set"]] def _create_split_files(self, root): root = pathlib.Path(root) splits = dict(train=(0, 1, 2), train_noval=(0, 2), val=(3,)) for split, idcs in splits.items(): self._create_split_file(root, split, idcs) num_images = max(itertools.chain(*splits.values())) + 1 num_images_per_split = {split: len(idcs) for split, idcs in splits.items()} return num_images, num_images_per_split def _create_split_file(self, root, name, idcs): with open(root / f"{name}.txt", "w") as fh: fh.writelines(f"{self._file_stem(idx)}\n" for idx in idcs) def _create_target_folder(self, root, name, num_images): io = datasets_utils.lazy_importer.scipy.io target_folder = pathlib.Path(root) / name os.makedirs(target_folder) sizes = [torch.randint(1, 4, size=(2,)).tolist() for _ in range(num_images)] for idx, size in enumerate(sizes): content = dict( GTcls=dict(Boundaries=self._create_boundaries(size), Segmentation=self._create_segmentation(size)) ) io.savemat(target_folder / f"{self._file_stem(idx)}.mat", content) return sizes def _create_boundaries(self, size): sparse = datasets_utils.lazy_importer.scipy.sparse return [ [sparse.csc_matrix(torch.randint(0, 2, size=size, dtype=torch.uint8).numpy())] for _ in range(self._NUM_CLASSES) ] def _create_segmentation(self, size): return torch.randint(0, self._NUM_CLASSES + 1, size=size, dtype=torch.uint8).numpy() def _file_stem(self, idx): return f"2008_{idx:06d}" class FakeDataTestCase(datasets_utils.ImageDatasetTestCase): DATASET_CLASS = datasets.FakeData FEATURE_TYPES = (PIL.Image.Image, int) def dataset_args(self, tmpdir, config): return () def inject_fake_data(self, tmpdir, config): return config["size"] def test_not_found_or_corrupted(self): self.skipTest("The data is generated at creation and thus cannot be non-existent or corrupted.") class PhotoTourTestCase(datasets_utils.ImageDatasetTestCase): DATASET_CLASS = datasets.PhotoTour # The PhotoTour dataset returns examples with different features with respect to the 'train' parameter. Thus, # we overwrite 'FEATURE_TYPES' with a dummy value to satisfy the initial checks of the base class. Furthermore, we # overwrite the 'test_feature_types()' method to select the correct feature types before the test is run. FEATURE_TYPES = () _TRAIN_FEATURE_TYPES = (torch.Tensor,) _TEST_FEATURE_TYPES = (torch.Tensor, torch.Tensor, torch.Tensor) datasets_utils.combinations_grid(train=(True, False)) _NAME = "liberty" def dataset_args(self, tmpdir, config): return tmpdir, self._NAME def inject_fake_data(self, tmpdir, config): tmpdir = pathlib.Path(tmpdir) # In contrast to the original data, the fake images injected here comprise only a single patch. Thus, # num_images == num_patches. num_patches = 5 image_files = self._create_images(tmpdir, self._NAME, num_patches) point_ids, info_file = self._create_info_file(tmpdir / self._NAME, num_patches) num_matches, matches_file = self._create_matches_file(tmpdir / self._NAME, num_patches, point_ids) self._create_archive(tmpdir, self._NAME, *image_files, info_file, matches_file) return num_patches if config["train"] else num_matches def _create_images(self, root, name, num_images): # The images in the PhotoTour dataset comprises of multiple grayscale patches of 64 x 64 pixels. Thus, the # smallest fake image is 64 x 64 pixels and comprises a single patch. return datasets_utils.create_image_folder( root, name, lambda idx: f"patches{idx:04d}.bmp", num_images, size=(1, 64, 64) ) def _create_info_file(self, root, num_images): point_ids = torch.randint(num_images, size=(num_images,)).tolist() file = root / "info.txt" with open(file, "w") as fh: fh.writelines([f"{point_id} 0\n" for point_id in point_ids]) return point_ids, file def _create_matches_file(self, root, num_patches, point_ids): lines = [ f"{patch_id1} {point_ids[patch_id1]} 0 {patch_id2} {point_ids[patch_id2]} 0\n" for patch_id1, patch_id2 in itertools.combinations(range(num_patches), 2) ] file = root / "m50_100000_100000_0.txt" with open(file, "w") as fh: fh.writelines(lines) return len(lines), file def _create_archive(self, root, name, *files): archive = root / f"{name}.zip" with zipfile.ZipFile(archive, "w") as zip: for file in files: zip.write(file, arcname=file.relative_to(root)) return archive @datasets_utils.test_all_configs def test_feature_types(self, config): feature_types = self.FEATURE_TYPES self.FEATURE_TYPES = self._TRAIN_FEATURE_TYPES if config["train"] else self._TEST_FEATURE_TYPES try: super().test_feature_types.__wrapped__(self, config) finally: self.FEATURE_TYPES = feature_types class Flickr8kTestCase(datasets_utils.ImageDatasetTestCase): DATASET_CLASS = datasets.Flickr8k FEATURE_TYPES = (PIL.Image.Image, list) _IMAGES_FOLDER = "images" _ANNOTATIONS_FILE = "captions.html" def dataset_args(self, tmpdir, config): tmpdir = pathlib.Path(tmpdir) root = tmpdir / self._IMAGES_FOLDER ann_file = tmpdir / self._ANNOTATIONS_FILE return str(root), str(ann_file) def inject_fake_data(self, tmpdir, config): num_images = 3 num_captions_per_image = 3 tmpdir = pathlib.Path(tmpdir) images = self._create_images(tmpdir, self._IMAGES_FOLDER, num_images) self._create_annotations_file(tmpdir, self._ANNOTATIONS_FILE, images, num_captions_per_image) return dict(num_examples=num_images, captions=self._create_captions(num_captions_per_image)) def _create_images(self, root, name, num_images): return datasets_utils.create_image_folder(root, name, self._image_file_name, num_images) def _image_file_name(self, idx): id = datasets_utils.create_random_string(10, string.digits) checksum = datasets_utils.create_random_string(10, string.digits, string.ascii_lowercase[:6]) size = datasets_utils.create_random_string(1, "qwcko") return f"{id}_{checksum}_{size}.jpg" def _create_annotations_file(self, root, name, images, num_captions_per_image): with open(root / name, "w") as fh: fh.write("