import torch import torchvision.transforms as transforms import unittest import random import numpy as np class Tester(unittest.TestCase): def test_crop(self): height = random.randint(10, 32) * 2 width = random.randint(10, 32) * 2 oheight = random.randint(5, (height - 2) / 2) * 2 owidth = random.randint(5, (width - 2) / 2) * 2 img = torch.ones(3, height, width) oh1 = (height - oheight) // 2 ow1 = (width - owidth) // 2 imgnarrow = img[:, oh1:oh1 + oheight, ow1:ow1 + owidth] imgnarrow.fill_(0) result = transforms.Compose([ transforms.ToPILImage(), transforms.CenterCrop((oheight, owidth)), transforms.ToTensor(), ])(img) assert result.sum() == 0, "height: " + str(height) + " width: " \ + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth) oheight += 1 owidth += 1 result = transforms.Compose([ transforms.ToPILImage(), transforms.CenterCrop((oheight, owidth)), transforms.ToTensor(), ])(img) sum1 = result.sum() assert sum1 > 1, "height: " + str(height) + " width: " \ + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth) oheight += 1 owidth += 1 result = transforms.Compose([ transforms.ToPILImage(), transforms.CenterCrop((oheight, owidth)), transforms.ToTensor(), ])(img) sum2 = result.sum() assert sum2 > 0, "height: " + str(height) + " width: " \ + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth) assert sum2 > sum1, "height: " + str(height) + " width: " \ + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth) def test_scale(self): height = random.randint(24, 32) * 2 width = random.randint(24, 32) * 2 osize = random.randint(5, 12) * 2 img = torch.ones(3, height, width) result = transforms.Compose([ transforms.ToPILImage(), transforms.Scale(osize), transforms.ToTensor(), ])(img) # print img.size() # print 'output size:', osize # print result.size() assert osize in result.size() if height < width: assert result.size(1) <= result.size(2) elif width < height: assert result.size(1) >= result.size(2) def test_random_crop(self): height = random.randint(10, 32) * 2 width = random.randint(10, 32) * 2 oheight = random.randint(5, (height - 2) / 2) * 2 owidth = random.randint(5, (width - 2) / 2) * 2 img = torch.ones(3, height, width) result = transforms.Compose([ transforms.ToPILImage(), transforms.RandomCrop((oheight, owidth)), transforms.ToTensor(), ])(img) assert result.size(1) == oheight assert result.size(2) == owidth padding = random.randint(1, 20) result = transforms.Compose([ transforms.ToPILImage(), transforms.RandomCrop((oheight, owidth), padding=padding), transforms.ToTensor(), ])(img) assert result.size(1) == oheight assert result.size(2) == owidth def test_pad(self): height = random.randint(10, 32) * 2 width = random.randint(10, 32) * 2 img = torch.ones(3, height, width) padding = random.randint(1, 20) result = transforms.Compose([ transforms.ToPILImage(), transforms.Pad(padding), transforms.ToTensor(), ])(img) assert result.size(1) == height + 2 * padding assert result.size(2) == width + 2 * padding def test_lambda(self): trans = transforms.Lambda(lambda x: x.add(10)) x = torch.randn(10) y = trans(x) assert (y.equal(torch.add(x, 10))) trans = transforms.Lambda(lambda x: x.add_(10)) x = torch.randn(10) y = trans(x) assert (y.equal(x)) def test_to_tensor(self): channels = 3 height, width = 4, 4 trans = transforms.ToTensor() input_data = torch.ByteTensor(channels, height, width).random_(0, 255).float().div_(255) img = transforms.ToPILImage()(input_data) output = trans(img) assert np.allclose(input_data.numpy(), output.numpy()) ndarray = np.random.randint(low=0, high=255, size=(height, width, channels)) output = trans(ndarray) expected_output = ndarray.transpose((2, 0, 1)) / 255.0 assert np.allclose(output.numpy(), expected_output) def test_tensor_to_pil_image(self): trans = transforms.ToPILImage() to_tensor = transforms.ToTensor() img_data = torch.Tensor(3, 4, 4).uniform_() img = trans(img_data) assert img.getbands() == ('R', 'G', 'B') r, g, b = img.split() expected_output = img_data.mul(255).int().float().div(255) assert np.allclose(expected_output[0].numpy(), to_tensor(r).numpy()) assert np.allclose(expected_output[1].numpy(), to_tensor(g).numpy()) assert np.allclose(expected_output[2].numpy(), to_tensor(b).numpy()) # single channel image img_data = torch.Tensor(1, 4, 4).uniform_() img = trans(img_data) assert img.getbands() == ('L',) l, = img.split() expected_output = img_data.mul(255).int().float().div(255) assert np.allclose(expected_output[0].numpy(), to_tensor(l).numpy()) def test_ndarray_to_pil_image(self): trans = transforms.ToPILImage() img_data = torch.ByteTensor(4, 4, 3).random_(0, 255).numpy() img = trans(img_data) assert img.getbands() == ('R', 'G', 'B') r, g, b = img.split() assert np.allclose(r, img_data[:, :, 0]) assert np.allclose(g, img_data[:, :, 1]) assert np.allclose(b, img_data[:, :, 2]) # single channel image img_data = torch.ByteTensor(4, 4, 1).random_(0, 255).numpy() img = trans(img_data) assert img.getbands() == ('L',) l, = img.split() assert np.allclose(l, img_data[:, :, 0]) def test_ndarray16_to_pil_image(self): trans = transforms.ToPILImage() img_data = np.random.randint(0, 65535, [4, 4, 1], np.uint16) img = trans(img_data) assert img.mode == 'I;16' assert np.allclose(img, img_data[:, :, 0]) if __name__ == '__main__': unittest.main()