from .._utils import IntermediateLayerGetter from ..utils import load_state_dict_from_url from .. import mobilenetv3 from .. import resnet from .deeplabv3 import DeepLabHead, DeepLabV3 from .fcn import FCN, FCNHead from .lraspp import LRASPP __all__ = ['fcn_resnet50', 'fcn_resnet101', 'deeplabv3_resnet50', 'deeplabv3_resnet101', 'deeplabv3_mobilenet_v3_large', 'lraspp_mobilenet_v3_large'] model_urls = { 'fcn_resnet50_coco': 'https://download.pytorch.org/models/fcn_resnet50_coco-1167a1af.pth', 'fcn_resnet101_coco': 'https://download.pytorch.org/models/fcn_resnet101_coco-7ecb50ca.pth', 'deeplabv3_resnet50_coco': 'https://download.pytorch.org/models/deeplabv3_resnet50_coco-cd0a2569.pth', 'deeplabv3_resnet101_coco': 'https://download.pytorch.org/models/deeplabv3_resnet101_coco-586e9e4e.pth', 'deeplabv3_mobilenet_v3_large_coco': 'https://download.pytorch.org/models/deeplabv3_mobilenet_v3_large-fc3c493d.pth', 'lraspp_mobilenet_v3_large_coco': 'https://download.pytorch.org/models/lraspp_mobilenet_v3_large-d234d4ea.pth', } def _segm_model(name, backbone_name, num_classes, aux, pretrained_backbone=True): if 'resnet' in backbone_name: backbone = resnet.__dict__[backbone_name]( pretrained=pretrained_backbone, replace_stride_with_dilation=[False, True, True]) out_layer = 'layer4' out_inplanes = 2048 aux_layer = 'layer3' aux_inplanes = 1024 elif 'mobilenet_v3' in backbone_name: backbone = mobilenetv3.__dict__[backbone_name](pretrained=pretrained_backbone, _dilated=True).features # Gather the indices of blocks which are strided. These are the locations of C1, ..., Cn-1 blocks. # The first and last blocks are always included because they are the C0 (conv1) and Cn. stage_indices = [0] + [i for i, b in enumerate(backbone) if getattr(b, "_is_cn", False)] + [len(backbone) - 1] out_pos = stage_indices[-1] # use C5 which has output_stride = 16 out_layer = str(out_pos) out_inplanes = backbone[out_pos].out_channels aux_pos = stage_indices[-4] # use C2 here which has output_stride = 8 aux_layer = str(aux_pos) aux_inplanes = backbone[aux_pos].out_channels else: raise NotImplementedError('backbone {} is not supported as of now'.format(backbone_name)) return_layers = {out_layer: 'out'} if aux: return_layers[aux_layer] = 'aux' backbone = IntermediateLayerGetter(backbone, return_layers=return_layers) aux_classifier = None if aux: aux_classifier = FCNHead(aux_inplanes, num_classes) model_map = { 'deeplabv3': (DeepLabHead, DeepLabV3), 'fcn': (FCNHead, FCN), } classifier = model_map[name][0](out_inplanes, num_classes) base_model = model_map[name][1] model = base_model(backbone, classifier, aux_classifier) return model def _load_model(arch_type, backbone, pretrained, progress, num_classes, aux_loss, **kwargs): if pretrained: aux_loss = True model = _segm_model(arch_type, backbone, num_classes, aux_loss, **kwargs) if pretrained: _load_weights(model, arch_type, backbone, progress) return model def _load_weights(model, arch_type, backbone, progress): arch = arch_type + '_' + backbone + '_coco' model_url = model_urls.get(arch, None) if model_url is None: raise NotImplementedError('pretrained {} is not supported as of now'.format(arch)) else: state_dict = load_state_dict_from_url(model_url, progress=progress) model.load_state_dict(state_dict) def _segm_lraspp_mobilenetv3(backbone_name, num_classes, pretrained_backbone=True): backbone = mobilenetv3.__dict__[backbone_name](pretrained=pretrained_backbone, _dilated=True).features # Gather the indices of blocks which are strided. These are the locations of C1, ..., Cn-1 blocks. # The first and last blocks are always included because they are the C0 (conv1) and Cn. stage_indices = [0] + [i for i, b in enumerate(backbone) if getattr(b, "_is_cn", False)] + [len(backbone) - 1] low_pos = stage_indices[-4] # use C2 here which has output_stride = 8 high_pos = stage_indices[-1] # use C5 which has output_stride = 16 low_channels = backbone[low_pos].out_channels high_channels = backbone[high_pos].out_channels backbone = IntermediateLayerGetter(backbone, return_layers={str(low_pos): 'low', str(high_pos): 'high'}) model = LRASPP(backbone, low_channels, high_channels, num_classes) return model def fcn_resnet50(pretrained=False, progress=True, num_classes=21, aux_loss=None, **kwargs): """Constructs a Fully-Convolutional Network model with a ResNet-50 backbone. Args: pretrained (bool): If True, returns a model pre-trained on COCO train2017 which contains the same classes as Pascal VOC progress (bool): If True, displays a progress bar of the download to stderr num_classes (int): number of output classes of the model (including the background) aux_loss (bool): If True, it uses an auxiliary loss """ return _load_model('fcn', 'resnet50', pretrained, progress, num_classes, aux_loss, **kwargs) def fcn_resnet101(pretrained=False, progress=True, num_classes=21, aux_loss=None, **kwargs): """Constructs a Fully-Convolutional Network model with a ResNet-101 backbone. Args: pretrained (bool): If True, returns a model pre-trained on COCO train2017 which contains the same classes as Pascal VOC progress (bool): If True, displays a progress bar of the download to stderr num_classes (int): number of output classes of the model (including the background) aux_loss (bool): If True, it uses an auxiliary loss """ return _load_model('fcn', 'resnet101', pretrained, progress, num_classes, aux_loss, **kwargs) def deeplabv3_resnet50(pretrained=False, progress=True, num_classes=21, aux_loss=None, **kwargs): """Constructs a DeepLabV3 model with a ResNet-50 backbone. Args: pretrained (bool): If True, returns a model pre-trained on COCO train2017 which contains the same classes as Pascal VOC progress (bool): If True, displays a progress bar of the download to stderr num_classes (int): number of output classes of the model (including the background) aux_loss (bool): If True, it uses an auxiliary loss """ return _load_model('deeplabv3', 'resnet50', pretrained, progress, num_classes, aux_loss, **kwargs) def deeplabv3_resnet101(pretrained=False, progress=True, num_classes=21, aux_loss=None, **kwargs): """Constructs a DeepLabV3 model with a ResNet-101 backbone. Args: pretrained (bool): If True, returns a model pre-trained on COCO train2017 which contains the same classes as Pascal VOC progress (bool): If True, displays a progress bar of the download to stderr num_classes (int): number of output classes of the model (including the background) aux_loss (bool): If True, it uses an auxiliary loss """ return _load_model('deeplabv3', 'resnet101', pretrained, progress, num_classes, aux_loss, **kwargs) def deeplabv3_mobilenet_v3_large(pretrained=False, progress=True, num_classes=21, aux_loss=None, **kwargs): """Constructs a DeepLabV3 model with a MobileNetV3-Large backbone. Args: pretrained (bool): If True, returns a model pre-trained on COCO train2017 which contains the same classes as Pascal VOC progress (bool): If True, displays a progress bar of the download to stderr num_classes (int): number of output classes of the model (including the background) aux_loss (bool): If True, it uses an auxiliary loss """ return _load_model('deeplabv3', 'mobilenet_v3_large', pretrained, progress, num_classes, aux_loss, **kwargs) def lraspp_mobilenet_v3_large(pretrained=False, progress=True, num_classes=21, **kwargs): """Constructs a Lite R-ASPP Network model with a MobileNetV3-Large backbone. Args: pretrained (bool): If True, returns a model pre-trained on COCO train2017 which contains the same classes as Pascal VOC progress (bool): If True, displays a progress bar of the download to stderr num_classes (int): number of output classes of the model (including the background) """ if kwargs.pop("aux_loss", False): raise NotImplementedError('This model does not use auxiliary loss') backbone_name = 'mobilenet_v3_large' model = _segm_lraspp_mobilenetv3(backbone_name, num_classes, **kwargs) if pretrained: _load_weights(model, 'lraspp', backbone_name, progress) return model