version: 2.1 # How to test the Linux jobs: # - Install CircleCI local CLI: https://circleci.com/docs/2.0/local-cli/ # - circleci config process .circleci/config.yml > gen.yml && circleci local execute -c gen.yml --job binary_win_wheel_py3.8 # - Replace binary_win_wheel_py3.8 with the name of the job you want to test. # Job names are 'name:' key. executors: windows-cpu: machine: resource_class: windows.xlarge image: windows-server-2019-vs2019:stable shell: bash.exe windows-gpu: machine: resource_class: windows.gpu.nvidia.medium image: windows-server-2019-nvidia:stable shell: bash.exe commands: checkout_merge: description: "checkout merge branch" steps: - checkout # - run: # name: Checkout merge branch # command: | # set -ex # BRANCH=$(git rev-parse --abbrev-ref HEAD) # if [[ "$BRANCH" != "main" ]]; then # git fetch --force origin ${CIRCLE_BRANCH}/merge:merged/${CIRCLE_BRANCH} # git checkout "merged/$CIRCLE_BRANCH" # fi designate_upload_channel: description: "inserts the correct upload channel into ${BASH_ENV}" steps: - run: name: adding UPLOAD_CHANNEL to BASH_ENV command: | our_upload_channel=nightly # On tags upload to test instead if [[ -n "${CIRCLE_TAG}" ]]; then our_upload_channel=test fi echo "export UPLOAD_CHANNEL=${our_upload_channel}" >> ${BASH_ENV} pip_install: parameters: args: type: string descr: type: string default: "" user: type: boolean default: true steps: - run: name: > <<^ parameters.descr >> pip install << parameters.args >> <> <<# parameters.descr >> << parameters.descr >> <> command: > pip install <<# parameters.user >> --user <> --progress-bar=off << parameters.args >> binary_common: &binary_common parameters: # Edit these defaults to do a release build_version: description: "version number of release binary; by default, build a nightly" type: string default: "" pytorch_version: description: "PyTorch version to build against; by default, use a nightly" type: string default: "" # Don't edit these python_version: description: "Python version to build against (e.g., 3.8)" type: string cu_version: description: "CUDA version to build against, in CU format (e.g., cpu or cu100)" type: string default: "cpu" unicode_abi: description: "Python 2.7 wheel only: whether or not we are cp27mu (default: no)" type: string default: "" wheel_docker_image: description: "Wheel only: what docker image to use" type: string default: "" conda_docker_image: description: "Conda only: what docker image to use" type: string default: "pytorch/conda-builder:cpu" environment: PYTHON_VERSION: << parameters.python_version >> PYTORCH_VERSION: << parameters.pytorch_version >> UNICODE_ABI: << parameters.unicode_abi >> CU_VERSION: << parameters.cu_version >> MACOSX_DEPLOYMENT_TARGET: 10.9 smoke_test_common: &smoke_test_common <<: *binary_common docker: - image: torchvision/smoke_test:latest jobs: circleci_consistency: docker: - image: cimg/python:3.8 steps: - checkout - pip_install: args: jinja2 pyyaml - run: name: Check CircleCI config consistency command: | python .circleci/regenerate.py git diff --exit-code || (echo ".circleci/config.yml not in sync with config.yml.in! Run .circleci/regenerate.py to update config"; exit 1) binary_win_conda: <<: *binary_common executor: windows-cpu steps: - checkout_merge - designate_upload_channel - run: name: Build conda packages no_output_timeout: 30m command: | set -ex source packaging/windows/internal/vc_install_helper.sh packaging/windows/internal/cuda_install.bat eval "$('/C/tools/miniconda3/Scripts/conda.exe' 'shell.bash' 'hook')" conda activate base conda install -yq conda-build "conda-package-handling!=1.5.0" packaging/build_conda.sh rm /C/tools/miniconda3/conda-bld/win-64/vs${VC_YEAR}*.tar.bz2 - store_artifacts: path: C:/tools/miniconda3/conda-bld/win-64 - persist_to_workspace: root: C:/tools/miniconda3/conda-bld/win-64 paths: - "*" - store_test_results: path: build_results/ binary_win_wheel: <<: *binary_common executor: windows-cpu steps: - checkout_merge - designate_upload_channel - run: name: Build wheel packages no_output_timeout: 30m command: | set -ex source packaging/windows/internal/vc_install_helper.sh packaging/windows/internal/cuda_install.bat packaging/build_wheel.sh - store_artifacts: path: dist - persist_to_workspace: root: dist paths: - "*" - store_test_results: path: build_results/ binary_macos_wheel: <<: *binary_common macos: xcode: "14.0" steps: - checkout_merge - designate_upload_channel - run: # Cannot easily deduplicate this as source'ing activate # will set environment variables which we need to propagate # to build_wheel.sh command: | curl -o conda.sh https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh sh conda.sh -b source $HOME/miniconda3/bin/activate packaging/build_wheel.sh - store_artifacts: path: dist - persist_to_workspace: root: dist paths: - "*" binary_macos_conda: <<: *binary_common macos: xcode: "14.0" steps: - checkout_merge - designate_upload_channel - run: command: | curl -o conda.sh https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh sh conda.sh -b source $HOME/miniconda3/bin/activate conda install -yq conda-build packaging/build_conda.sh - store_artifacts: path: /Users/distiller/miniconda3/conda-bld/osx-64 - persist_to_workspace: root: /Users/distiller/miniconda3/conda-bld/osx-64 paths: - "*" - store_test_results: path: build_results/ # Requires org-member context binary_conda_upload: docker: - image: continuumio/miniconda steps: - attach_workspace: at: ~/workspace - designate_upload_channel - run: command: | # Prevent credential from leaking conda install -yq anaconda-client set -x anaconda -t "${CONDA_PYTORCHBOT_TOKEN}" upload ~/workspace/*.tar.bz2 -u "pytorch-${UPLOAD_CHANNEL}" --label main --no-progress --force # Requires org-member context binary_wheel_upload: parameters: subfolder: description: "What whl subfolder to upload to, e.g., blank or cu100/ (trailing slash is important)" type: string docker: - image: cimg/python:3.8 steps: - attach_workspace: at: ~/workspace - designate_upload_channel - checkout - pip_install: args: awscli - run: command: | export PATH="$HOME/.local/bin:$PATH" # Prevent credential from leaking set +x export AWS_ACCESS_KEY_ID="${PYTORCH_BINARY_AWS_ACCESS_KEY_ID}" export AWS_SECRET_ACCESS_KEY="${PYTORCH_BINARY_AWS_SECRET_ACCESS_KEY}" set -x for pkg in ~/workspace/*.whl; do aws s3 cp "$pkg" "s3://pytorch/whl/${UPLOAD_CHANNEL}/<< parameters.subfolder >>" --acl public-read done smoke_test_docker_image_build: machine: image: ubuntu-2004:202104-01 resource_class: large environment: image_name: torchvision/smoke_test steps: - checkout - designate_upload_channel - run: name: Build and push Docker image no_output_timeout: "1h" command: | set +x echo "${DOCKER_HUB_TOKEN}" | docker login --username "${DOCKER_HUB_USERNAME}" --password-stdin set -x cd .circleci/smoke_test/docker && docker build . -t ${image_name}:${CIRCLE_WORKFLOW_ID} docker tag ${image_name}:${CIRCLE_WORKFLOW_ID} ${image_name}:latest docker push ${image_name}:${CIRCLE_WORKFLOW_ID} docker push ${image_name}:latest cmake_linux_cpu: <<: *binary_common docker: - image: "pytorch/manylinux-cpu" resource_class: 2xlarge+ steps: - checkout_merge - designate_upload_channel - run: name: Setup conda command: .circleci/unittest/linux/scripts/setup_env.sh - run: packaging/build_cmake.sh cmake_linux_gpu: <<: *binary_common machine: image: ubuntu-2004-cuda-11.4:202110-01 resource_class: gpu.nvidia.small steps: - checkout_merge - designate_upload_channel - run: name: Setup conda command: docker run -e CU_VERSION -e PYTHON_VERSION -e UNICODE_ABI -e PYTORCH_VERSION -t --gpus all -v $PWD:$PWD -w $PWD << parameters.wheel_docker_image >> .circleci/unittest/linux/scripts/setup_env.sh - run: name: Build torchvision C++ distribution and test no_output_timeout: 30m command: docker run -e CU_VERSION -e PYTHON_VERSION -e UNICODE_ABI -e PYTORCH_VERSION -e UPLOAD_CHANNEL -t --gpus all -v $PWD:$PWD -w $PWD << parameters.wheel_docker_image >> packaging/build_cmake.sh cmake_macos_cpu: <<: *binary_common macos: xcode: "14.0" steps: - checkout_merge - designate_upload_channel - run: command: | curl -o conda.sh https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh sh conda.sh -b source $HOME/miniconda3/bin/activate conda install -yq conda-build cmake python=<< parameters.python_version >> packaging/build_cmake.sh cmake_windows_cpu: <<: *binary_common executor: name: windows-cpu steps: - checkout_merge - designate_upload_channel - run: command: | set -ex source packaging/windows/internal/vc_install_helper.sh eval "$('/C/tools/miniconda3/Scripts/conda.exe' 'shell.bash' 'hook')" conda activate base conda create -yn python39 python=3.9 conda activate python39 packaging/build_cmake.sh cmake_windows_gpu: <<: *binary_common executor: name: windows-gpu steps: - checkout_merge - designate_upload_channel - run: name: Update CUDA driver command: packaging/windows/internal/driver_update.bat - run: command: | set -ex source packaging/windows/internal/vc_install_helper.sh packaging/windows/internal/cuda_install.bat eval "$('/C/tools/miniconda3/Scripts/conda.exe' 'shell.bash' 'hook')" conda activate conda update -y conda conda create -yn python39 python=3.9 conda activate python39 packaging/build_cmake.sh workflows: lint: jobs: - circleci_consistency build: jobs: [] cmake: jobs: - cmake_linux_cpu: cu_version: cpu name: cmake_linux_cpu python_version: '3.8' - cmake_linux_gpu: cu_version: cu117 name: cmake_linux_gpu python_version: '3.8' wheel_docker_image: pytorch/manylinux-cuda117 - cmake_windows_cpu: cu_version: cpu name: cmake_windows_cpu python_version: '3.8' - cmake_windows_gpu: cu_version: cu117 name: cmake_windows_gpu python_version: '3.8' - cmake_macos_cpu: cu_version: cpu name: cmake_macos_cpu python_version: '3.8' nightly: jobs: [] docker_build: triggers: - schedule: cron: "0 10 * * 0" filters: branches: only: - main jobs: - smoke_test_docker_image_build: context: org-member