#include #include #include #include #include "cuda_helpers.h" #include #include int const threadsPerBlock = sizeof(unsigned long long) * 8; template __device__ inline float devIoU(T const* const a, T const* const b) { T left = max(a[0], b[0]), right = min(a[2], b[2]); T top = max(a[1], b[1]), bottom = min(a[3], b[3]); T width = max(right - left, (T)0), height = max(bottom - top, (T)0); T interS = width * height; T Sa = (a[2] - a[0]) * (a[3] - a[1]); T Sb = (b[2] - b[0]) * (b[3] - b[1]); return interS / (Sa + Sb - interS); } template __global__ void nms_kernel( const int n_boxes, const float nms_overlap_thresh, const T* dev_boxes, unsigned long long* dev_mask) { const int row_start = blockIdx.y; const int col_start = blockIdx.x; // if (row_start > col_start) return; const int row_size = min(n_boxes - row_start * threadsPerBlock, threadsPerBlock); const int col_size = min(n_boxes - col_start * threadsPerBlock, threadsPerBlock); __shared__ T block_boxes[threadsPerBlock * 5]; if (threadIdx.x < col_size) { block_boxes[threadIdx.x * 5 + 0] = dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 0]; block_boxes[threadIdx.x * 5 + 1] = dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 1]; block_boxes[threadIdx.x * 5 + 2] = dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 2]; block_boxes[threadIdx.x * 5 + 3] = dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 3]; block_boxes[threadIdx.x * 5 + 4] = dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 4]; } __syncthreads(); if (threadIdx.x < row_size) { const int cur_box_idx = threadsPerBlock * row_start + threadIdx.x; const T* cur_box = dev_boxes + cur_box_idx * 5; int i = 0; unsigned long long t = 0; int start = 0; if (row_start == col_start) { start = threadIdx.x + 1; } for (i = start; i < col_size; i++) { if (devIoU(cur_box, block_boxes + i * 5) > nms_overlap_thresh) { t |= 1ULL << i; } } const int col_blocks = at::cuda::ATenCeilDiv(n_boxes, threadsPerBlock); dev_mask[cur_box_idx * col_blocks + col_start] = t; } } // boxes is a N x 5 tensor at::Tensor nms_cuda(const at::Tensor boxes, float nms_overlap_thresh) { using scalar_t = float; AT_ASSERTM(boxes.type().is_cuda(), "boxes must be a CUDA tensor"); at::cuda::CUDAGuard device_guard(boxes.device()); auto scores = boxes.select(1, 4); auto order_t = std::get<1>(scores.sort(0, /* descending=*/true)); auto boxes_sorted = boxes.index_select(0, order_t); int boxes_num = boxes.size(0); const int col_blocks = at::cuda::ATenCeilDiv(boxes_num, threadsPerBlock); at::Tensor mask = at::empty({boxes_num * col_blocks}, boxes.options().dtype(at::kLong)); dim3 blocks(col_blocks, col_blocks); dim3 threads(threadsPerBlock); cudaStream_t stream = at::cuda::getCurrentCUDAStream(); AT_DISPATCH_FLOATING_TYPES_AND_HALF( boxes_sorted.type(), "nms_kernel_cuda", [&] { nms_kernel<<>>( boxes_num, nms_overlap_thresh, boxes_sorted.data(), (unsigned long long*)mask.data()); }); at::Tensor mask_cpu = mask.to(at::kCPU); unsigned long long* mask_host = (unsigned long long*)mask_cpu.data(); std::vector remv(col_blocks); memset(&remv[0], 0, sizeof(unsigned long long) * col_blocks); at::Tensor keep = at::empty({boxes_num}, boxes.options().dtype(at::kLong).device(at::kCPU)); int64_t* keep_out = keep.data(); int num_to_keep = 0; for (int i = 0; i < boxes_num; i++) { int nblock = i / threadsPerBlock; int inblock = i % threadsPerBlock; if (!(remv[nblock] & (1ULL << inblock))) { keep_out[num_to_keep++] = i; unsigned long long* p = mask_host + i * col_blocks; for (int j = nblock; j < col_blocks; j++) { remv[j] |= p[j]; } } } AT_CUDA_CHECK(cudaGetLastError()); return order_t .index({keep.narrow(/*dim=*/0, /*start=*/0, /*length=*/num_to_keep) .to(order_t.device(), keep.scalar_type())}); }