import torch import torch.nn as nn from torchvision.models.utils import load_state_dict_from_url import torchvision.models.shufflenetv2 import sys from .utils import _replace_relu, quantize_model shufflenetv2 = sys.modules['torchvision.models.shufflenetv2'] __all__ = [ 'QuantizableShuffleNetV2', 'shufflenet_v2_x0_5', 'shufflenet_v2_x1_0', 'shufflenet_v2_x1_5', 'shufflenet_v2_x2_0' ] quant_model_urls = { 'shufflenetv2_x0.5_fbgemm': None, 'shufflenetv2_x1.0_fbgemm': 'https://download.pytorch.org/models/quantized/shufflenetv2_x1_fbgemm-db332c57.pth', 'shufflenetv2_x1.5_fbgemm': None, 'shufflenetv2_x2.0_fbgemm': None, } class QuantizableInvertedResidual(shufflenetv2.InvertedResidual): def __init__(self, *args, **kwargs): super(QuantizableInvertedResidual, self).__init__(*args, **kwargs) self.cat = nn.quantized.FloatFunctional() def forward(self, x): if self.stride == 1: x1, x2 = x.chunk(2, dim=1) out = self.cat.cat((x1, self.branch2(x2)), dim=1) else: out = self.cat.cat((self.branch1(x), self.branch2(x)), dim=1) out = shufflenetv2.channel_shuffle(out, 2) return out class QuantizableShuffleNetV2(shufflenetv2.ShuffleNetV2): def __init__(self, *args, **kwargs): super(QuantizableShuffleNetV2, self).__init__(*args, inverted_residual=QuantizableInvertedResidual, **kwargs) self.quant = torch.quantization.QuantStub() self.dequant = torch.quantization.DeQuantStub() def forward(self, x): x = self.quant(x) x = self._forward_impl(x) x = self.dequant(x) return x def fuse_model(self): r"""Fuse conv/bn/relu modules in shufflenetv2 model Fuse conv+bn+relu/ conv+relu/conv+bn modules to prepare for quantization. Model is modified in place. Note that this operation does not change numerics and the model after modification is in floating point """ for name, m in self._modules.items(): if name in ["conv1", "conv5"]: torch.quantization.fuse_modules(m, [["0", "1", "2"]], inplace=True) for m in self.modules(): if type(m) == QuantizableInvertedResidual: if len(m.branch1._modules.items()) > 0: torch.quantization.fuse_modules( m.branch1, [["0", "1"], ["2", "3", "4"]], inplace=True ) torch.quantization.fuse_modules( m.branch2, [["0", "1", "2"], ["3", "4"], ["5", "6", "7"]], inplace=True, ) def _shufflenetv2(arch, pretrained, progress, quantize, *args, **kwargs): model = QuantizableShuffleNetV2(*args, **kwargs) _replace_relu(model) if quantize: # TODO use pretrained as a string to specify the backend backend = 'fbgemm' quantize_model(model, backend) else: assert pretrained in [True, False] if pretrained: if quantize: model_url = quant_model_urls[arch + '_' + backend] else: model_url = shufflenetv2.model_urls[arch] state_dict = load_state_dict_from_url(model_url, progress=progress) model.load_state_dict(state_dict) return model def shufflenet_v2_x0_5(pretrained=False, progress=True, quantize=False, **kwargs): """ Constructs a ShuffleNetV2 with 0.5x output channels, as described in `"ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design" `_. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr quantize (bool): If True, return a quantized version of the model """ return _shufflenetv2('shufflenetv2_x0.5', pretrained, progress, quantize, [4, 8, 4], [24, 48, 96, 192, 1024], **kwargs) def shufflenet_v2_x1_0(pretrained=False, progress=True, quantize=False, **kwargs): """ Constructs a ShuffleNetV2 with 1.0x output channels, as described in `"ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design" `_. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr quantize (bool): If True, return a quantized version of the model """ return _shufflenetv2('shufflenetv2_x1.0', pretrained, progress, quantize, [4, 8, 4], [24, 116, 232, 464, 1024], **kwargs) def shufflenet_v2_x1_5(pretrained=False, progress=True, quantize=False, **kwargs): """ Constructs a ShuffleNetV2 with 1.5x output channels, as described in `"ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design" `_. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr quantize (bool): If True, return a quantized version of the model """ return _shufflenetv2('shufflenetv2_x1.5', pretrained, progress, quantize, [4, 8, 4], [24, 176, 352, 704, 1024], **kwargs) def shufflenet_v2_x2_0(pretrained=False, progress=True, quantize=False, **kwargs): """ Constructs a ShuffleNetV2 with 2.0x output channels, as described in `"ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design" `_. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr quantize (bool): If True, return a quantized version of the model """ return _shufflenetv2('shufflenetv2_x2.0', pretrained, progress, quantize, [4, 8, 4], [24, 244, 488, 976, 2048], **kwargs)