import warnings import torch import torch.nn as nn from torch.nn import functional as F from torchvision.models.utils import load_state_dict_from_url from torchvision.models.googlenet import ( GoogLeNetOutputs, BasicConv2d, Inception, InceptionAux, GoogLeNet, model_urls) from .utils import _replace_relu, quantize_model __all__ = ['QuantizableGoogLeNet', 'googlenet'] quant_model_urls = { # fp32 GoogLeNet ported from TensorFlow, with weights quantized in PyTorch 'googlenet_fbgemm': 'https://download.pytorch.org/models/quantized/googlenet_fbgemm-c00238cf.pth', } def googlenet(pretrained=False, progress=True, quantize=False, **kwargs): r"""GoogLeNet (Inception v1) model architecture from `"Going Deeper with Convolutions" `_. Note that quantize = True returns a quantized model with 8 bit weights. Quantized models only support inference and run on CPUs. GPU inference is not yet supported Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr quantize (bool): If True, return a quantized version of the model aux_logits (bool): If True, adds two auxiliary branches that can improve training. Default: *False* when pretrained is True otherwise *True* transform_input (bool): If True, preprocesses the input according to the method with which it was trained on ImageNet. Default: *False* """ if pretrained: if 'transform_input' not in kwargs: kwargs['transform_input'] = True if 'aux_logits' not in kwargs: kwargs['aux_logits'] = False if kwargs['aux_logits']: warnings.warn('auxiliary heads in the pretrained googlenet model are NOT pretrained, ' 'so make sure to train them') original_aux_logits = kwargs['aux_logits'] kwargs['aux_logits'] = True kwargs['init_weights'] = False model = QuantizableGoogLeNet(**kwargs) _replace_relu(model) if quantize: # TODO use pretrained as a string to specify the backend backend = 'fbgemm' quantize_model(model, backend) else: assert pretrained in [True, False] if pretrained: if quantize: model_url = quant_model_urls['googlenet' + '_' + backend] else: model_url = model_urls['googlenet'] state_dict = load_state_dict_from_url(model_url, progress=progress) model.load_state_dict(state_dict) if not original_aux_logits: model.aux_logits = False model.aux1 = None model.aux2 = None return model class QuantizableBasicConv2d(BasicConv2d): def __init__(self, *args, **kwargs): super(QuantizableBasicConv2d, self).__init__(*args, **kwargs) self.relu = nn.ReLU() def forward(self, x): x = self.conv(x) x = self.bn(x) x = self.relu(x) return x def fuse_model(self): torch.quantization.fuse_modules(self, ["conv", "bn", "relu"], inplace=True) class QuantizableInception(Inception): def __init__(self, *args, **kwargs): super(QuantizableInception, self).__init__( conv_block=QuantizableBasicConv2d, *args, **kwargs) self.cat = nn.quantized.FloatFunctional() def forward(self, x): outputs = self._forward(x) return self.cat.cat(outputs, 1) class QuantizableInceptionAux(InceptionAux): def __init__(self, *args, **kwargs): super(QuantizableInceptionAux, self).__init__( conv_block=QuantizableBasicConv2d, *args, **kwargs) self.relu = nn.ReLU() self.dropout = nn.Dropout(0.7) def forward(self, x): # aux1: N x 512 x 14 x 14, aux2: N x 528 x 14 x 14 x = F.adaptive_avg_pool2d(x, (4, 4)) # aux1: N x 512 x 4 x 4, aux2: N x 528 x 4 x 4 x = self.conv(x) # N x 128 x 4 x 4 x = torch.flatten(x, 1) # N x 2048 x = self.relu(self.fc1(x)) # N x 1024 x = self.dropout(x) # N x 1024 x = self.fc2(x) # N x 1000 (num_classes) return x class QuantizableGoogLeNet(GoogLeNet): def __init__(self, *args, **kwargs): super(QuantizableGoogLeNet, self).__init__( blocks=[QuantizableBasicConv2d, QuantizableInception, QuantizableInceptionAux], *args, **kwargs ) self.quant = torch.quantization.QuantStub() self.dequant = torch.quantization.DeQuantStub() def forward(self, x): x = self._transform_input(x) x = self.quant(x) x, aux1, aux2 = self._forward(x) x = self.dequant(x) aux_defined = self.training and self.aux_logits if torch.jit.is_scripting(): if not aux_defined: warnings.warn("Scripted QuantizableGoogleNet always returns GoogleNetOutputs Tuple") return GoogLeNetOutputs(x, aux2, aux1) else: return self.eager_outputs(x, aux2, aux1) def fuse_model(self): r"""Fuse conv/bn/relu modules in googlenet model Fuse conv+bn+relu/ conv+relu/conv+bn modules to prepare for quantization. Model is modified in place. Note that this operation does not change numerics and the model after modification is in floating point """ for m in self.modules(): if type(m) == QuantizableBasicConv2d: m.fuse_model()