import torch from torch import nn, Tensor from torch.nn.modules.utils import _pair from torchvision.extension import _assert_has_ops from ._utils import convert_boxes_to_roi_format, check_roi_boxes_shape def ps_roi_pool( input: Tensor, boxes: Tensor, output_size: int, spatial_scale: float = 1.0, ) -> Tensor: """ Performs Position-Sensitive Region of Interest (RoI) Pool operator described in R-FCN Args: input (Tensor[N, C, H, W]): The input tensor, i.e. a batch with ``N`` elements. Each element contains ``C`` feature maps of dimensions ``H x W``. boxes (Tensor[K, 5] or List[Tensor[L, 4]]): the box coordinates in (x1, y1, x2, y2) format where the regions will be taken from. The coordinate must satisfy ``0 <= x1 < x2`` and ``0 <= y1 < y2``. If a single Tensor is passed, then the first column should contain the index of the corresponding element in the batch, i.e. a number in ``[0, N - 1]``. If a list of Tensors is passed, then each Tensor will correspond to the boxes for an element i in the batch. output_size (int or Tuple[int, int]): the size of the output (in bins or pixels) after the pooling is performed, as (height, width). spatial_scale (float): a scaling factor that maps the box coordinates to the input coordinates. For example, if your boxes are defined on the scale of a 224x224 image and your input is a 112x112 feature map (resulting from a 0.5x scaling of the original image), you'll want to set this to 0.5. Default: 1.0 Returns: Tensor[K, C / (output_size[0] * output_size[1]), output_size[0], output_size[1]]: The pooled RoIs. """ _assert_has_ops() check_roi_boxes_shape(boxes) rois = boxes output_size = _pair(output_size) if not isinstance(rois, torch.Tensor): rois = convert_boxes_to_roi_format(rois) output, _ = torch.ops.torchvision.ps_roi_pool(input, rois, spatial_scale, output_size[0], output_size[1]) return output class PSRoIPool(nn.Module): """ See :func:`ps_roi_pool`. """ def __init__(self, output_size: int, spatial_scale: float): super().__init__() self.output_size = output_size self.spatial_scale = spatial_scale def forward(self, input: Tensor, rois: Tensor) -> Tensor: return ps_roi_pool(input, rois, self.output_size, self.spatial_scale) def __repr__(self) -> str: tmpstr = self.__class__.__name__ + "(" tmpstr += "output_size=" + str(self.output_size) tmpstr += ", spatial_scale=" + str(self.spatial_scale) tmpstr += ")" return tmpstr