from typing import Optional from torch import nn from .. import resnet from ..feature_extraction import create_feature_extractor from ._utils import _SimpleSegmentationModel, _load_weights __all__ = ["FCN", "fcn_resnet50", "fcn_resnet101"] model_urls = { "fcn_resnet50_coco": "https://download.pytorch.org/models/fcn_resnet50_coco-1167a1af.pth", "fcn_resnet101_coco": "https://download.pytorch.org/models/fcn_resnet101_coco-7ecb50ca.pth", } class FCN(_SimpleSegmentationModel): """ Implements a Fully-Convolutional Network for semantic segmentation. Args: backbone (nn.Module): the network used to compute the features for the model. The backbone should return an OrderedDict[Tensor], with the key being "out" for the last feature map used, and "aux" if an auxiliary classifier is used. classifier (nn.Module): module that takes the "out" element returned from the backbone and returns a dense prediction. aux_classifier (nn.Module, optional): auxiliary classifier used during training """ pass class FCNHead(nn.Sequential): def __init__(self, in_channels: int, channels: int) -> None: inter_channels = in_channels // 4 layers = [ nn.Conv2d(in_channels, inter_channels, 3, padding=1, bias=False), nn.BatchNorm2d(inter_channels), nn.ReLU(), nn.Dropout(0.1), nn.Conv2d(inter_channels, channels, 1), ] super().__init__(*layers) def _fcn_resnet( backbone: resnet.ResNet, num_classes: int, aux: Optional[bool], ) -> FCN: return_layers = {"layer4": "out"} if aux: return_layers["layer3"] = "aux" backbone = create_feature_extractor(backbone, return_layers) aux_classifier = FCNHead(1024, num_classes) if aux else None classifier = FCNHead(2048, num_classes) return FCN(backbone, classifier, aux_classifier) def fcn_resnet50( pretrained: bool = False, progress: bool = True, num_classes: int = 21, aux_loss: Optional[bool] = None, pretrained_backbone: bool = True, ) -> FCN: """Constructs a Fully-Convolutional Network model with a ResNet-50 backbone. Args: pretrained (bool): If True, returns a model pre-trained on COCO train2017 which contains the same classes as Pascal VOC progress (bool): If True, displays a progress bar of the download to stderr num_classes (int): number of output classes of the model (including the background) aux_loss (bool, optional): If True, it uses an auxiliary loss pretrained_backbone (bool): If True, the backbone will be pre-trained. """ if pretrained: aux_loss = True pretrained_backbone = False backbone = resnet.resnet50(pretrained=pretrained_backbone, replace_stride_with_dilation=[False, True, True]) model = _fcn_resnet(backbone, num_classes, aux_loss) if pretrained: arch = "fcn_resnet50_coco" _load_weights(arch, model, model_urls.get(arch, None), progress) return model def fcn_resnet101( pretrained: bool = False, progress: bool = True, num_classes: int = 21, aux_loss: Optional[bool] = None, pretrained_backbone: bool = True, ) -> FCN: """Constructs a Fully-Convolutional Network model with a ResNet-101 backbone. Args: pretrained (bool): If True, returns a model pre-trained on COCO train2017 which contains the same classes as Pascal VOC progress (bool): If True, displays a progress bar of the download to stderr num_classes (int): number of output classes of the model (including the background) aux_loss (bool, optional): If True, it uses an auxiliary loss pretrained_backbone (bool): If True, the backbone will be pre-trained. """ if pretrained: aux_loss = True pretrained_backbone = False backbone = resnet.resnet101(pretrained=pretrained_backbone, replace_stride_with_dilation=[False, True, True]) model = _fcn_resnet(backbone, num_classes, aux_loss) if pretrained: arch = "fcn_resnet101_coco" _load_weights(arch, model, model_urls.get(arch, None), progress) return model