from typing import List, Optional import torch from torch import nn from torch.nn import functional as F from .. import mobilenetv3 from .. import resnet from ..feature_extraction import create_feature_extractor from ._utils import _SimpleSegmentationModel, _load_weights from .fcn import FCNHead __all__ = [ "DeepLabV3", "deeplabv3_resnet50", "deeplabv3_resnet101", "deeplabv3_mobilenet_v3_large", ] model_urls = { "deeplabv3_resnet50_coco": "https://download.pytorch.org/models/deeplabv3_resnet50_coco-cd0a2569.pth", "deeplabv3_resnet101_coco": "https://download.pytorch.org/models/deeplabv3_resnet101_coco-586e9e4e.pth", "deeplabv3_mobilenet_v3_large_coco": "https://download.pytorch.org/models/deeplabv3_mobilenet_v3_large-fc3c493d.pth", } class DeepLabV3(_SimpleSegmentationModel): """ Implements DeepLabV3 model from `"Rethinking Atrous Convolution for Semantic Image Segmentation" `_. Args: backbone (nn.Module): the network used to compute the features for the model. The backbone should return an OrderedDict[Tensor], with the key being "out" for the last feature map used, and "aux" if an auxiliary classifier is used. classifier (nn.Module): module that takes the "out" element returned from the backbone and returns a dense prediction. aux_classifier (nn.Module, optional): auxiliary classifier used during training """ pass class DeepLabHead(nn.Sequential): def __init__(self, in_channels: int, num_classes: int) -> None: super().__init__( ASPP(in_channels, [12, 24, 36]), nn.Conv2d(256, 256, 3, padding=1, bias=False), nn.BatchNorm2d(256), nn.ReLU(), nn.Conv2d(256, num_classes, 1), ) class ASPPConv(nn.Sequential): def __init__(self, in_channels: int, out_channels: int, dilation: int) -> None: modules = [ nn.Conv2d(in_channels, out_channels, 3, padding=dilation, dilation=dilation, bias=False), nn.BatchNorm2d(out_channels), nn.ReLU(), ] super().__init__(*modules) class ASPPPooling(nn.Sequential): def __init__(self, in_channels: int, out_channels: int) -> None: super().__init__( nn.AdaptiveAvgPool2d(1), nn.Conv2d(in_channels, out_channels, 1, bias=False), nn.BatchNorm2d(out_channels), nn.ReLU(), ) def forward(self, x: torch.Tensor) -> torch.Tensor: size = x.shape[-2:] for mod in self: x = mod(x) return F.interpolate(x, size=size, mode="bilinear", align_corners=False) class ASPP(nn.Module): def __init__(self, in_channels: int, atrous_rates: List[int], out_channels: int = 256) -> None: super().__init__() modules = [] modules.append( nn.Sequential(nn.Conv2d(in_channels, out_channels, 1, bias=False), nn.BatchNorm2d(out_channels), nn.ReLU()) ) rates = tuple(atrous_rates) for rate in rates: modules.append(ASPPConv(in_channels, out_channels, rate)) modules.append(ASPPPooling(in_channels, out_channels)) self.convs = nn.ModuleList(modules) self.project = nn.Sequential( nn.Conv2d(len(self.convs) * out_channels, out_channels, 1, bias=False), nn.BatchNorm2d(out_channels), nn.ReLU(), nn.Dropout(0.5), ) def forward(self, x: torch.Tensor) -> torch.Tensor: _res = [] for conv in self.convs: _res.append(conv(x)) res = torch.cat(_res, dim=1) return self.project(res) def _deeplabv3_resnet( backbone: resnet.ResNet, num_classes: int, aux: Optional[bool], ) -> DeepLabV3: return_layers = {"layer4": "out"} if aux: return_layers["layer3"] = "aux" backbone = create_feature_extractor(backbone, return_layers) aux_classifier = FCNHead(1024, num_classes) if aux else None classifier = DeepLabHead(2048, num_classes) return DeepLabV3(backbone, classifier, aux_classifier) def _deeplabv3_mobilenetv3( backbone: mobilenetv3.MobileNetV3, num_classes: int, aux: Optional[bool], ) -> DeepLabV3: backbone = backbone.features # Gather the indices of blocks which are strided. These are the locations of C1, ..., Cn-1 blocks. # The first and last blocks are always included because they are the C0 (conv1) and Cn. stage_indices = [0] + [i for i, b in enumerate(backbone) if getattr(b, "_is_cn", False)] + [len(backbone) - 1] out_pos = stage_indices[-1] # use C5 which has output_stride = 16 out_inplanes = backbone[out_pos].out_channels aux_pos = stage_indices[-4] # use C2 here which has output_stride = 8 aux_inplanes = backbone[aux_pos].out_channels return_layers = {str(out_pos): "out"} if aux: return_layers[str(aux_pos)] = "aux" backbone = create_feature_extractor(backbone, return_layers) aux_classifier = FCNHead(aux_inplanes, num_classes) if aux else None classifier = DeepLabHead(out_inplanes, num_classes) return DeepLabV3(backbone, classifier, aux_classifier) def deeplabv3_resnet50( pretrained: bool = False, progress: bool = True, num_classes: int = 21, aux_loss: Optional[bool] = None, pretrained_backbone: bool = True, ) -> DeepLabV3: """Constructs a DeepLabV3 model with a ResNet-50 backbone. Args: pretrained (bool): If True, returns a model pre-trained on COCO train2017 which contains the same classes as Pascal VOC progress (bool): If True, displays a progress bar of the download to stderr num_classes (int): number of output classes of the model (including the background) aux_loss (bool, optional): If True, it uses an auxiliary loss pretrained_backbone (bool): If True, the backbone will be pre-trained. """ if pretrained: aux_loss = True pretrained_backbone = False backbone = resnet.resnet50(pretrained=pretrained_backbone, replace_stride_with_dilation=[False, True, True]) model = _deeplabv3_resnet(backbone, num_classes, aux_loss) if pretrained: arch = "deeplabv3_resnet50_coco" _load_weights(arch, model, model_urls.get(arch, None), progress) return model def deeplabv3_resnet101( pretrained: bool = False, progress: bool = True, num_classes: int = 21, aux_loss: Optional[bool] = None, pretrained_backbone: bool = True, ) -> DeepLabV3: """Constructs a DeepLabV3 model with a ResNet-101 backbone. Args: pretrained (bool): If True, returns a model pre-trained on COCO train2017 which contains the same classes as Pascal VOC progress (bool): If True, displays a progress bar of the download to stderr num_classes (int): The number of classes aux_loss (bool, optional): If True, include an auxiliary classifier pretrained_backbone (bool): If True, the backbone will be pre-trained. """ if pretrained: aux_loss = True pretrained_backbone = False backbone = resnet.resnet101(pretrained=pretrained_backbone, replace_stride_with_dilation=[False, True, True]) model = _deeplabv3_resnet(backbone, num_classes, aux_loss) if pretrained: arch = "deeplabv3_resnet101_coco" _load_weights(arch, model, model_urls.get(arch, None), progress) return model def deeplabv3_mobilenet_v3_large( pretrained: bool = False, progress: bool = True, num_classes: int = 21, aux_loss: Optional[bool] = None, pretrained_backbone: bool = True, ) -> DeepLabV3: """Constructs a DeepLabV3 model with a MobileNetV3-Large backbone. Args: pretrained (bool): If True, returns a model pre-trained on COCO train2017 which contains the same classes as Pascal VOC progress (bool): If True, displays a progress bar of the download to stderr num_classes (int): number of output classes of the model (including the background) aux_loss (bool, optional): If True, it uses an auxiliary loss pretrained_backbone (bool): If True, the backbone will be pre-trained. """ if pretrained: aux_loss = True pretrained_backbone = False backbone = mobilenetv3.mobilenet_v3_large(pretrained=pretrained_backbone, dilated=True) model = _deeplabv3_mobilenetv3(backbone, num_classes, aux_loss) if pretrained: arch = "deeplabv3_mobilenet_v3_large_coco" _load_weights(arch, model, model_urls.get(arch, None), progress) return model