from typing import Any import torch import torch.nn as nn from torch import Tensor from torchvision.models import shufflenetv2 from ..._internally_replaced_utils import load_state_dict_from_url from .utils import _replace_relu, quantize_model __all__ = [ "QuantizableShuffleNetV2", "shufflenet_v2_x0_5", "shufflenet_v2_x1_0", "shufflenet_v2_x1_5", "shufflenet_v2_x2_0", ] quant_model_urls = { "shufflenetv2_x0.5_fbgemm": None, "shufflenetv2_x1.0_fbgemm": "https://download.pytorch.org/models/quantized/shufflenetv2_x1_fbgemm-db332c57.pth", "shufflenetv2_x1.5_fbgemm": None, "shufflenetv2_x2.0_fbgemm": None, } class QuantizableInvertedResidual(shufflenetv2.InvertedResidual): def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, **kwargs) self.cat = nn.quantized.FloatFunctional() def forward(self, x: Tensor) -> Tensor: if self.stride == 1: x1, x2 = x.chunk(2, dim=1) out = self.cat.cat([x1, self.branch2(x2)], dim=1) else: out = self.cat.cat([self.branch1(x), self.branch2(x)], dim=1) out = shufflenetv2.channel_shuffle(out, 2) return out class QuantizableShuffleNetV2(shufflenetv2.ShuffleNetV2): # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659 def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, inverted_residual=QuantizableInvertedResidual, **kwargs) # type: ignore[misc] self.quant = torch.quantization.QuantStub() self.dequant = torch.quantization.DeQuantStub() def forward(self, x: Tensor) -> Tensor: x = self.quant(x) x = self._forward_impl(x) x = self.dequant(x) return x def fuse_model(self) -> None: r"""Fuse conv/bn/relu modules in shufflenetv2 model Fuse conv+bn+relu/ conv+relu/conv+bn modules to prepare for quantization. Model is modified in place. Note that this operation does not change numerics and the model after modification is in floating point """ for name, m in self._modules.items(): if name in ["conv1", "conv5"]: torch.quantization.fuse_modules(m, [["0", "1", "2"]], inplace=True) for m in self.modules(): if type(m) is QuantizableInvertedResidual: if len(m.branch1._modules.items()) > 0: torch.quantization.fuse_modules(m.branch1, [["0", "1"], ["2", "3", "4"]], inplace=True) torch.quantization.fuse_modules( m.branch2, [["0", "1", "2"], ["3", "4"], ["5", "6", "7"]], inplace=True, ) def _shufflenetv2( arch: str, pretrained: bool, progress: bool, quantize: bool, *args: Any, **kwargs: Any, ) -> QuantizableShuffleNetV2: model = QuantizableShuffleNetV2(*args, **kwargs) _replace_relu(model) if quantize: # TODO use pretrained as a string to specify the backend backend = "fbgemm" quantize_model(model, backend) else: assert pretrained in [True, False] if pretrained: if quantize: model_url = quant_model_urls[arch + "_" + backend] else: model_url = shufflenetv2.model_urls[arch] state_dict = load_state_dict_from_url(model_url, progress=progress) model.load_state_dict(state_dict) return model def shufflenet_v2_x0_5( pretrained: bool = False, progress: bool = True, quantize: bool = False, **kwargs: Any, ) -> QuantizableShuffleNetV2: """ Constructs a ShuffleNetV2 with 0.5x output channels, as described in `"ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design" `_. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr quantize (bool): If True, return a quantized version of the model """ return _shufflenetv2( "shufflenetv2_x0.5", pretrained, progress, quantize, [4, 8, 4], [24, 48, 96, 192, 1024], **kwargs ) def shufflenet_v2_x1_0( pretrained: bool = False, progress: bool = True, quantize: bool = False, **kwargs: Any, ) -> QuantizableShuffleNetV2: """ Constructs a ShuffleNetV2 with 1.0x output channels, as described in `"ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design" `_. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr quantize (bool): If True, return a quantized version of the model """ return _shufflenetv2( "shufflenetv2_x1.0", pretrained, progress, quantize, [4, 8, 4], [24, 116, 232, 464, 1024], **kwargs ) def shufflenet_v2_x1_5( pretrained: bool = False, progress: bool = True, quantize: bool = False, **kwargs: Any, ) -> QuantizableShuffleNetV2: """ Constructs a ShuffleNetV2 with 1.5x output channels, as described in `"ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design" `_. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr quantize (bool): If True, return a quantized version of the model """ return _shufflenetv2( "shufflenetv2_x1.5", pretrained, progress, quantize, [4, 8, 4], [24, 176, 352, 704, 1024], **kwargs ) def shufflenet_v2_x2_0( pretrained: bool = False, progress: bool = True, quantize: bool = False, **kwargs: Any, ) -> QuantizableShuffleNetV2: """ Constructs a ShuffleNetV2 with 2.0x output channels, as described in `"ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design" `_. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr quantize (bool): If True, return a quantized version of the model """ return _shufflenetv2( "shufflenetv2_x2.0", pretrained, progress, quantize, [4, 8, 4], [24, 244, 488, 976, 2048], **kwargs )