from typing import Any from torch import Tensor from torch import nn from torch.quantization import QuantStub, DeQuantStub, fuse_modules from torchvision.models.mobilenetv2 import InvertedResidual, MobileNetV2, model_urls from ..._internally_replaced_utils import load_state_dict_from_url from ...ops.misc import ConvNormActivation from .utils import _replace_relu, quantize_model __all__ = ["QuantizableMobileNetV2", "mobilenet_v2"] quant_model_urls = { "mobilenet_v2_qnnpack": "https://download.pytorch.org/models/quantized/mobilenet_v2_qnnpack_37f702c5.pth" } class QuantizableInvertedResidual(InvertedResidual): def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, **kwargs) self.skip_add = nn.quantized.FloatFunctional() def forward(self, x: Tensor) -> Tensor: if self.use_res_connect: return self.skip_add.add(x, self.conv(x)) else: return self.conv(x) def fuse_model(self) -> None: for idx in range(len(self.conv)): if type(self.conv[idx]) is nn.Conv2d: fuse_modules(self.conv, [str(idx), str(idx + 1)], inplace=True) class QuantizableMobileNetV2(MobileNetV2): def __init__(self, *args: Any, **kwargs: Any) -> None: """ MobileNet V2 main class Args: Inherits args from floating point MobileNetV2 """ super().__init__(*args, **kwargs) self.quant = QuantStub() self.dequant = DeQuantStub() def forward(self, x: Tensor) -> Tensor: x = self.quant(x) x = self._forward_impl(x) x = self.dequant(x) return x def fuse_model(self) -> None: for m in self.modules(): if type(m) is ConvNormActivation: fuse_modules(m, ["0", "1", "2"], inplace=True) if type(m) is QuantizableInvertedResidual: m.fuse_model() def mobilenet_v2( pretrained: bool = False, progress: bool = True, quantize: bool = False, **kwargs: Any, ) -> QuantizableMobileNetV2: """ Constructs a MobileNetV2 architecture from `"MobileNetV2: Inverted Residuals and Linear Bottlenecks" `_. Note that quantize = True returns a quantized model with 8 bit weights. Quantized models only support inference and run on CPUs. GPU inference is not yet supported Args: pretrained (bool): If True, returns a model pre-trained on ImageNet. progress (bool): If True, displays a progress bar of the download to stderr quantize(bool): If True, returns a quantized model, else returns a float model """ model = QuantizableMobileNetV2(block=QuantizableInvertedResidual, **kwargs) _replace_relu(model) if quantize: # TODO use pretrained as a string to specify the backend backend = "qnnpack" quantize_model(model, backend) else: assert pretrained in [True, False] if pretrained: if quantize: model_url = quant_model_urls["mobilenet_v2_" + backend] else: model_url = model_urls["mobilenet_v2"] state_dict = load_state_dict_from_url(model_url, progress=progress) model.load_state_dict(state_dict) return model