import torch.nn as nn import torch.utils.model_zoo as model_zoo import math __all__ = [ 'VGG', 'vgg11', 'vgg11_bn', 'vgg13', 'vgg13_bn', 'vgg16', 'vgg16_bn', 'vgg19_bn', 'vgg19', ] model_urls = { 'vgg11': 'https://s3.amazonaws.com/pytorch/models/vgg11-fb7e83b2.pth', 'vgg13': 'https://s3.amazonaws.com/pytorch/models/vgg13-58758d87.pth', 'vgg16': 'https://s3.amazonaws.com/pytorch/models/vgg16-82412952.pth', 'vgg19': 'https://s3.amazonaws.com/pytorch/models/vgg19-341d7465.pth', } class VGG(nn.Module): def __init__(self, features): super(VGG, self).__init__() self.features = features self.classifier = nn.Sequential( nn.Dropout(), nn.Linear(512 * 7 * 7, 4096), nn.ReLU(True), nn.Dropout(), nn.Linear(4096, 4096), nn.ReLU(True), nn.Linear(4096, 1000), ) self._initialize_weights() def forward(self, x): x = self.features(x) x = x.view(x.size(0), -1) x = self.classifier(x) return x def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.Linear): n = m.weight.size(1) m.weight.data.normal_(0, 0.01) m.bias.data.zero_() def make_layers(cfg, batch_norm=False): layers = [] in_channels = 3 for v in cfg: if v == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1) if batch_norm: layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)] else: layers += [conv2d, nn.ReLU(inplace=True)] in_channels = v return nn.Sequential(*layers) cfg = { 'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'], 'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'], } def vgg11(pretrained=False, **kwargs): """VGG 11-layer model (configuration "A") Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = VGG(make_layers(cfg['A']), **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['vgg11'])) return model def vgg11_bn(**kwargs): """VGG 11-layer model (configuration "A") with batch normalization""" return VGG(make_layers(cfg['A'], batch_norm=True), **kwargs) def vgg13(pretrained=False, **kwargs): """VGG 13-layer model (configuration "B") Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = VGG(make_layers(cfg['B']), **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['vgg13'])) return model def vgg13_bn(**kwargs): """VGG 13-layer model (configuration "B") with batch normalization""" return VGG(make_layers(cfg['B'], batch_norm=True), **kwargs) def vgg16(pretrained=False, **kwargs): """VGG 16-layer model (configuration "D") Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = VGG(make_layers(cfg['D']), **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['vgg16'])) return model def vgg16_bn(**kwargs): """VGG 16-layer model (configuration "D") with batch normalization""" return VGG(make_layers(cfg['D'], batch_norm=True), **kwargs) def vgg19(pretrained=False, **kwargs): """VGG 19-layer model (configuration "E") Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = VGG(make_layers(cfg['E']), **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['vgg19'])) return model def vgg19_bn(**kwargs): """VGG 19-layer model (configuration 'E') with batch normalization""" return VGG(make_layers(cfg['E'], batch_norm=True), **kwargs)