import math import torch import torch.nn as nn import torch.utils.model_zoo as model_zoo __all__ = ['SqueezeNet', 'squeezenet1_0', 'squeezenet1_1'] model_urls = { 'squeezenet1_0': 'https://s3.amazonaws.com/pytorch/models/squeezenet1_0-a815701f.pth', 'squeezenet1_1': 'https://s3.amazonaws.com/pytorch/models/squeezenet1_1-f364aa15.pth', } class Fire(nn.Module): def __init__(self, inplanes, squeeze_planes, expand1x1_planes, expand3x3_planes): super(Fire, self).__init__() self.inplanes = inplanes self.squeeze = nn.Conv2d(inplanes, squeeze_planes, kernel_size=1) self.squeeze_activation = nn.ReLU(inplace=True) self.expand1x1 = nn.Conv2d(squeeze_planes, expand1x1_planes, kernel_size=1) self.expand1x1_activation = nn.ReLU(inplace=True) self.expand3x3 = nn.Conv2d(squeeze_planes, expand3x3_planes, kernel_size=3, padding=1) self.expand3x3_activation = nn.ReLU(inplace=True) def forward(self, x): x = self.squeeze_activation(self.squeeze(x)) return torch.cat([ self.expand1x1_activation(self.expand1x1(x)), self.expand3x3_activation(self.expand3x3(x)) ], 1) class SqueezeNet(nn.Module): def __init__(self, version=1.0, num_classes=1000): super(SqueezeNet, self).__init__() if version not in [1.0, 1.1]: raise ValueError("Unsupported SqueezeNet version {version}:" "1.0 or 1.1 expected".format(version=version)) self.num_classes = num_classes if version == 1.0: self.features = nn.Sequential( nn.Conv2d(3, 96, kernel_size=7, stride=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True), Fire(96, 16, 64, 64), Fire(128, 16, 64, 64), Fire(128, 32, 128, 128), nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True), Fire(256, 32, 128, 128), Fire(256, 48, 192, 192), Fire(384, 48, 192, 192), Fire(384, 64, 256, 256), nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True), Fire(512, 64, 256, 256), ) else: self.features = nn.Sequential( nn.Conv2d(3, 64, kernel_size=3, stride=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True), Fire(64, 16, 64, 64), Fire(128, 16, 64, 64), nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True), Fire(128, 32, 128, 128), Fire(256, 32, 128, 128), nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True), Fire(256, 48, 192, 192), Fire(384, 48, 192, 192), Fire(384, 64, 256, 256), Fire(512, 64, 256, 256), ) # Final convolution is initialized differently form the rest final_conv = nn.Conv2d(512, num_classes, kernel_size=1) self.classifier = nn.Sequential( nn.Dropout(p=0.5), final_conv, nn.ReLU(inplace=True), nn.AvgPool2d(13) ) for m in self.modules(): if isinstance(m, nn.Conv2d): gain = 2.0 if m is final_conv: m.weight.data.normal_(0, 0.01) else: fan_in = m.kernel_size[0] * m.kernel_size[1] * m.in_channels u = math.sqrt(3.0 * gain / fan_in) m.weight.data.uniform_(-u, u) if m.bias is not None: m.bias.data.zero_() def forward(self, x): x = self.features(x) x = self.classifier(x) return x.view(x.size(0), self.num_classes) def squeezenet1_0(pretrained=False, **kwargs): r"""SqueezeNet model architecture from the `"SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size" `_ paper. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = SqueezeNet(version=1.0, **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['squeezenet1_0'])) return model def squeezenet1_1(pretrained=False, **kwargs): r"""SqueezeNet 1.1 model from the `official SqueezeNet repo `_. SqueezeNet 1.1 has 2.4x less computation and slightly fewer parameters than SqueezeNet 1.0, without sacrificing accuracy. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = SqueezeNet(version=1.1, **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['squeezenet1_1'])) return model